Optimizing fitting parameters in thermogravimetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06

AUTHORS

Matilde Ríos-Fachal, Javier Tarrío-Saavedra, Jorge López-Beceiro, Salvador Naya, Ramón Artiaga

ABSTRACT

This study presents an alternative to simple estimation of parametric fitting models used in thermal analysis. The addressed problem consists in performing an alternative optimization method to fit thermal analysis curves, specifically TG curves and their first derivatives. This proposal consists in estimating the optimal parameters corresponding to fitting kinetic models applied to thermogravimetric (TG) curves, using evolutionary algorithms: differential evolution (DE), simulated annealing and covariance matrix adapting evolutionary strategy. This procedure does not need to include a vector with the initial values of the parameters, as is currently required. Despite their potential benefits, the application of these methods is by no means usual in the context of thermal analysis curve’s estimation. Simulated TG curves are obtained and fitted using a generalized logistic mixture model, where each logistic component represents a thermal degradation process. The simulation of TG curves in four different scenarios taking into account the extent of processes overlapping allows us to evaluate the final results and thus to validate the proposed procedure: two degradation processes non-overlapped simulated using two generalized logistics, two processes overlapped, four processes non-overlapped and four processes overlapped two by two. The mean square error function is chosen as objective function and the above algorithms have been applied separately and together, i.e., taking the final solution of the DE algorithm is the initial solution of the remaining. The results show that the evolutionary algorithms provide a good solution for adjusting simulated TG curves, better than that provided by traditional methods. More... »

PAGES

1141-1151

References to SciGraph publications

  • 1985-01. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1997-12. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces in JOURNAL OF GLOBAL OPTIMIZATION
  • 2013-08. Effect of nanotubes on the thermal stability of polystyrene in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011. Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms in NONE
  • 2007-01. Evaluating the logistic mixture model on real and simulated TG curves in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1990. Statistical Models in S in COMPSTAT
  • 1984. A trust-region approach to linearly constrained optimization in NUMERICAL ANALYSIS
  • 2011-04. Thermal characterization of ammonium alum in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2006. The CMA Evolution Strategy: A Comparing Review in TOWARDS A NEW EVOLUTIONARY COMPUTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-013-3623-0

    DOI

    http://dx.doi.org/10.1007/s10973-013-3623-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019104135


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Conseller\u00eda de Cultura, Educaci\u00f3n e Ordenaci\u00f3n Universitaria", 
              "id": "https://www.grid.ac/institutes/grid.483729.3", 
              "name": [
                "CPI Cruz do Sar. Conseller\u00eda de Cultura, Educaci\u00f3n e Ordenaci\u00f3n Universitaria, Bergondo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "R\u00edos-Fachal", 
            "givenName": "Matilde", 
            "id": "sg:person.013327421451.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327421451.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tarr\u00edo-Saavedra", 
            "givenName": "Javier", 
            "id": "sg:person.010527411315.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00f3pez-Beceiro", 
            "givenName": "Jorge", 
            "id": "sg:person.07766551031.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naya", 
            "givenName": "Salvador", 
            "id": "sg:person.010043463111.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artiaga", 
            "givenName": "Ram\u00f3n", 
            "id": "sg:person.011361512031.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-010-1189-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004258804", 
              "https://doi.org/10.1007/s10973-010-1189-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymdegradstab.2008.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005837678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23899-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007356882", 
              "https://doi.org/10.1007/978-3-642-23899-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23899-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007356882", 
              "https://doi.org/10.1007/978-3-642-23899-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymdegradstab.2004.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010700345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008202821328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012950914", 
              "https://doi.org/10.1023/a:1008202821328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.1023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017662972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-50096-1_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021025657", 
              "https://doi.org/10.1007/978-3-642-50096-1_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cp40564d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022038506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-32494-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022688207", 
              "https://doi.org/10.1007/3-540-32494-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eurpolymj.2013.04.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024867969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.2561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024890806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/355958.355965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026856789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystems.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028846994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2006.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034760975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2012.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036413585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10409230091169212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039047683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10409230091169212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039047683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-006-8283-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042964163", 
              "https://doi.org/10.1007/s10973-006-8283-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/7.4.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043067538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/106365601750190398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043473749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-013-3160-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044207332", 
              "https://doi.org/10.1007/s10973-013-3160-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0099519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051486155", 
              "https://doi.org/10.1007/bfb0099519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051937309", 
              "https://doi.org/10.1007/bf00940812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700514t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700514t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp208070d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056085523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/10666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059346793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.220.4598.671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062526985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0111030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062837892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1019005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1520/stp45226s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088489439"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "This study presents an alternative to simple estimation of parametric fitting models used in thermal analysis. The addressed problem consists in performing an alternative optimization method to fit thermal analysis curves, specifically TG curves and their first derivatives. This proposal consists in estimating the optimal parameters corresponding to fitting kinetic models applied to thermogravimetric (TG) curves, using evolutionary algorithms: differential evolution (DE), simulated annealing and covariance matrix adapting evolutionary strategy. This procedure does not need to include a vector with the initial values of the parameters, as is currently required. Despite their potential benefits, the application of these methods is by no means usual in the context of thermal analysis curve\u2019s estimation. Simulated TG curves are obtained and fitted using a generalized logistic mixture model, where each logistic component represents a thermal degradation process. The simulation of TG curves in four different scenarios taking into account the extent of processes overlapping allows us to evaluate the final results and thus to validate the proposed procedure: two degradation processes non-overlapped simulated using two generalized logistics, two processes overlapped, four processes non-overlapped and four processes overlapped two by two. The mean square error function is chosen as objective function and the above algorithms have been applied separately and together, i.e., taking the final solution of the DE algorithm is the initial solution of the remaining. The results show that the evolutionary algorithms provide a good solution for adjusting simulated TG curves, better than that provided by traditional methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10973-013-3623-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "name": "Optimizing fitting parameters in thermogravimetry", 
        "pagination": "1141-1151", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5b06186eae3e064b3fb14b175f01ce6baf5dc357d7f5fb25c9dce7b8b5d4301e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-013-3623-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019104135"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-013-3623-0", 
          "https://app.dimensions.ai/details/publication/pub.1019104135"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10973-013-3623-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-013-3623-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-013-3623-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-013-3623-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-013-3623-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-013-3623-0 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nd002bdc257024d2f97ecbe8543579adb
    4 schema:citation sg:pub.10.1007/3-540-32494-1_4
    5 sg:pub.10.1007/978-3-642-23899-4
    6 sg:pub.10.1007/978-3-642-50096-1_48
    7 sg:pub.10.1007/bf00940812
    8 sg:pub.10.1007/bfb0099519
    9 sg:pub.10.1007/s10973-006-8283-x
    10 sg:pub.10.1007/s10973-010-1189-7
    11 sg:pub.10.1007/s10973-013-3160-x
    12 sg:pub.10.1023/a:1008202821328
    13 https://doi.org/10.1002/cem.1023
    14 https://doi.org/10.1002/cem.2561
    15 https://doi.org/10.1016/j.biosystems.2012.06.004
    16 https://doi.org/10.1016/j.cej.2006.11.007
    17 https://doi.org/10.1016/j.chemolab.2012.07.003
    18 https://doi.org/10.1016/j.eurpolymj.2013.04.026
    19 https://doi.org/10.1016/j.polymdegradstab.2004.03.006
    20 https://doi.org/10.1016/j.polymdegradstab.2008.08.006
    21 https://doi.org/10.1021/ef700514t
    22 https://doi.org/10.1021/jp208070d
    23 https://doi.org/10.1039/c2cp40564d
    24 https://doi.org/10.1080/10409230091169212
    25 https://doi.org/10.1090/qam/10666
    26 https://doi.org/10.1093/comjnl/7.4.308
    27 https://doi.org/10.1126/science.220.4598.671
    28 https://doi.org/10.1137/0111030
    29 https://doi.org/10.1137/1019005
    30 https://doi.org/10.1145/355958.355965
    31 https://doi.org/10.1162/106365601750190398
    32 https://doi.org/10.1520/stp45226s
    33 schema:datePublished 2014-06
    34 schema:datePublishedReg 2014-06-01
    35 schema:description This study presents an alternative to simple estimation of parametric fitting models used in thermal analysis. The addressed problem consists in performing an alternative optimization method to fit thermal analysis curves, specifically TG curves and their first derivatives. This proposal consists in estimating the optimal parameters corresponding to fitting kinetic models applied to thermogravimetric (TG) curves, using evolutionary algorithms: differential evolution (DE), simulated annealing and covariance matrix adapting evolutionary strategy. This procedure does not need to include a vector with the initial values of the parameters, as is currently required. Despite their potential benefits, the application of these methods is by no means usual in the context of thermal analysis curve’s estimation. Simulated TG curves are obtained and fitted using a generalized logistic mixture model, where each logistic component represents a thermal degradation process. The simulation of TG curves in four different scenarios taking into account the extent of processes overlapping allows us to evaluate the final results and thus to validate the proposed procedure: two degradation processes non-overlapped simulated using two generalized logistics, two processes overlapped, four processes non-overlapped and four processes overlapped two by two. The mean square error function is chosen as objective function and the above algorithms have been applied separately and together, i.e., taking the final solution of the DE algorithm is the initial solution of the remaining. The results show that the evolutionary algorithms provide a good solution for adjusting simulated TG curves, better than that provided by traditional methods.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N0425fe3378df4b4a88c72d803a69638f
    40 Na4eced6502244831b9f1c82e6224df33
    41 sg:journal.1294862
    42 schema:name Optimizing fitting parameters in thermogravimetry
    43 schema:pagination 1141-1151
    44 schema:productId N1432cc6a47bc48acb5390d0b228cec20
    45 N2eccf4ee2a5d4fe698d67077cba19ceb
    46 N764a320527fa4cfea52b8b94ebbd76f1
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104135
    48 https://doi.org/10.1007/s10973-013-3623-0
    49 schema:sdDatePublished 2019-04-10T15:01
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Ndefffcd0361f4cb0a4eecf1ede8f240d
    52 schema:url http://link.springer.com/10.1007%2Fs10973-013-3623-0
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0425fe3378df4b4a88c72d803a69638f schema:volumeNumber 116
    57 rdf:type schema:PublicationVolume
    58 N1432cc6a47bc48acb5390d0b228cec20 schema:name readcube_id
    59 schema:value 5b06186eae3e064b3fb14b175f01ce6baf5dc357d7f5fb25c9dce7b8b5d4301e
    60 rdf:type schema:PropertyValue
    61 N1c6c7c4abae6492eb514c7b2131e98b9 rdf:first sg:person.010043463111.42
    62 rdf:rest N3aed5596ecd442368557273a50d92386
    63 N2eccf4ee2a5d4fe698d67077cba19ceb schema:name dimensions_id
    64 schema:value pub.1019104135
    65 rdf:type schema:PropertyValue
    66 N3aed5596ecd442368557273a50d92386 rdf:first sg:person.011361512031.23
    67 rdf:rest rdf:nil
    68 N764a320527fa4cfea52b8b94ebbd76f1 schema:name doi
    69 schema:value 10.1007/s10973-013-3623-0
    70 rdf:type schema:PropertyValue
    71 N8f78bf99ea584bc78d295fb6f4df1361 rdf:first sg:person.07766551031.96
    72 rdf:rest N1c6c7c4abae6492eb514c7b2131e98b9
    73 Na4eced6502244831b9f1c82e6224df33 schema:issueNumber 3
    74 rdf:type schema:PublicationIssue
    75 Nd002bdc257024d2f97ecbe8543579adb rdf:first sg:person.013327421451.83
    76 rdf:rest Nd35d1eb1af1540b19a064551c016f886
    77 Nd35d1eb1af1540b19a064551c016f886 rdf:first sg:person.010527411315.90
    78 rdf:rest N8f78bf99ea584bc78d295fb6f4df1361
    79 Ndefffcd0361f4cb0a4eecf1ede8f240d schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Applied Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1294862 schema:issn 1388-6150
    88 1572-8943
    89 schema:name Journal of Thermal Analysis and Calorimetry
    90 rdf:type schema:Periodical
    91 sg:person.010043463111.42 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    92 schema:familyName Naya
    93 schema:givenName Salvador
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42
    95 rdf:type schema:Person
    96 sg:person.010527411315.90 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    97 schema:familyName Tarrío-Saavedra
    98 schema:givenName Javier
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90
    100 rdf:type schema:Person
    101 sg:person.011361512031.23 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    102 schema:familyName Artiaga
    103 schema:givenName Ramón
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23
    105 rdf:type schema:Person
    106 sg:person.013327421451.83 schema:affiliation https://www.grid.ac/institutes/grid.483729.3
    107 schema:familyName Ríos-Fachal
    108 schema:givenName Matilde
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327421451.83
    110 rdf:type schema:Person
    111 sg:person.07766551031.96 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    112 schema:familyName López-Beceiro
    113 schema:givenName Jorge
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96
    115 rdf:type schema:Person
    116 sg:pub.10.1007/3-540-32494-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688207
    117 https://doi.org/10.1007/3-540-32494-1_4
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-642-23899-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007356882
    120 https://doi.org/10.1007/978-3-642-23899-4
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-642-50096-1_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021025657
    123 https://doi.org/10.1007/978-3-642-50096-1_48
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf00940812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051937309
    126 https://doi.org/10.1007/bf00940812
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bfb0099519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051486155
    129 https://doi.org/10.1007/bfb0099519
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10973-006-8283-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042964163
    132 https://doi.org/10.1007/s10973-006-8283-x
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10973-010-1189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004258804
    135 https://doi.org/10.1007/s10973-010-1189-7
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10973-013-3160-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044207332
    138 https://doi.org/10.1007/s10973-013-3160-x
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
    141 https://doi.org/10.1023/a:1008202821328
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1002/cem.1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017662972
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/cem.2561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024890806
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.biosystems.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028846994
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.cej.2006.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760975
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.chemolab.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413585
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.eurpolymj.2013.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024867969
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.polymdegradstab.2004.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010700345
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.polymdegradstab.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005837678
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1021/ef700514t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055481069
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1021/jp208070d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056085523
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1039/c2cp40564d schema:sameAs https://app.dimensions.ai/details/publication/pub.1022038506
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1080/10409230091169212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039047683
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1090/qam/10666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346793
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1093/comjnl/7.4.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043067538
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1137/0111030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837892
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1137/1019005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861067
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1145/355958.355965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026856789
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1162/106365601750190398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043473749
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1520/stp45226s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088489439
    182 rdf:type schema:CreativeWork
    183 https://www.grid.ac/institutes/grid.483729.3 schema:alternateName Consellería de Cultura, Educación e Ordenación Universitaria
    184 schema:name CPI Cruz do Sar. Consellería de Cultura, Educación e Ordenación Universitaria, Bergondo, Spain
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
    187 schema:name Escola Politécnica Superior, Universidade da Coruña, Ferrol, Spain
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...