Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-03

AUTHORS

Benigno Barbés, Ricardo Páramo, Eduardo Blanco, María José Pastoriza-Gallego, Manuel M. Piñeiro, José Luis Legido, Carlos Casanova

ABSTRACT

Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified. More... »

PAGES

1615-1625

References to SciGraph publications

  • 2009-05-21. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids in JOURNAL OF NANOPARTICLE RESEARCH
  • 2002-01. Uncertainty of the Thermal Conductivity Measurement Using the Transient Hot Wire Method in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2003-01. Saturated Heat Capacities of Some Linear and Branched Alkyl-Benzenes Between 288 and 348 K in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2009-11-04. Enhanced thermal conductivity of nanofluids: a state-of-the-art review in MICROFLUIDICS AND NANOFLUIDICS
  • 2011-02-09. Discussion on the thermal conductivity enhancement of nanofluids in NANOSCALE RESEARCH LETTERS
  • 2008-09-21. The effect of particle size on the thermal conductivity of alumina nanofluids in JOURNAL OF NANOPARTICLE RESEARCH
  • 2010-12-15. Thermal conductivity measurement of liquids by means of a microcalorimeter in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1987-11. The thermal conductivity of n-hexane, n-heptane, and n-decane by the transient hot-wire method in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2010-05-22. Nanofluids Research: Key Issues in NANOSCALE RESEARCH LETTERS
  • 2008-10-28. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009-11-13. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009-05-31. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid in JOURNAL OF NANOPARTICLE RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-012-2534-9

    DOI

    http://dx.doi.org/10.1007/s10973-012-2534-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031715389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5239.d", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barb\u00e9s", 
            "givenName": "Benigno", 
            "id": "sg:person.01115017026.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115017026.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5239.d", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e1ramo", 
            "givenName": "Ricardo", 
            "id": "sg:person.012031754735.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031754735.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c1rea de Mec\u00e1nica de Fluidos, Universidad de Oviedo, 33271, Gij\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "\u00c1rea de Mec\u00e1nica de Fluidos, Universidad de Oviedo, 33271, Gij\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blanco", 
            "givenName": "Eduardo", 
            "id": "sg:person.012337274147.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337274147.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain", 
              "id": "http://www.grid.ac/institutes/grid.6312.6", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pastoriza-Gallego", 
            "givenName": "Mar\u00eda Jos\u00e9", 
            "id": "sg:person.01274063266.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274063266.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain", 
              "id": "http://www.grid.ac/institutes/grid.6312.6", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pi\u00f1eiro", 
            "givenName": "Manuel M.", 
            "id": "sg:person.01052711125.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052711125.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain", 
              "id": "http://www.grid.ac/institutes/grid.6312.6", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Legido", 
            "givenName": "Jos\u00e9 Luis", 
            "id": "sg:person.012212573741.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212573741.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5239.d", 
              "name": [
                "Departamento de F\u00edsica Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Casanova", 
            "givenName": "Carlos", 
            "id": "sg:person.013467055631.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013467055631.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11051-008-9500-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039720130", 
              "https://doi.org/10.1007/s11051-008-9500-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-010-1169-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027481171", 
              "https://doi.org/10.1007/s10973-010-1169-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-009-9657-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005952917", 
              "https://doi.org/10.1007/s11051-009-9657-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1556-276x-6-124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006703563", 
              "https://doi.org/10.1186/1556-276x-6-124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-009-9658-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013973504", 
              "https://doi.org/10.1007/s11051-009-9658-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-008-9185-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002906749", 
              "https://doi.org/10.1007/s10973-008-9185-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00500786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008226834", 
              "https://doi.org/10.1007/bf00500786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-009-0498-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046114303", 
              "https://doi.org/10.1007/s10973-009-0498-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013774922355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031641926", 
              "https://doi.org/10.1023/a:1013774922355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022318416775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022913485", 
              "https://doi.org/10.1023/a:1022318416775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11671-010-9638-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016051714", 
              "https://doi.org/10.1007/s11671-010-9638-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10404-009-0524-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021381358", 
              "https://doi.org/10.1007/s10404-009-0524-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07-03", 
        "datePublishedReg": "2012-07-03", 
        "description": "Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338\u00a0K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the \u201cscanning or continuous method.\u201d The Hamilton\u2013Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10973-012-2534-9", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "111"
          }
        ], 
        "keywords": [
          "thermal conductivity", 
          "specific heat capacity", 
          "Hamilton\u2013Crosser model", 
          "particle volume fraction", 
          "thermal conductivity measurements", 
          "coaxial cylinder method", 
          "steady-state coaxial cylinders method", 
          "heat capacity", 
          "Al2O3 nanofluid", 
          "base fluid", 
          "specific heat capacity measurements", 
          "volume fraction", 
          "nanofluids", 
          "cylinder method", 
          "conductivity", 
          "batch cell", 
          "conductivity measurements", 
          "continuous method", 
          "calorimetric vessel", 
          "heat capacity measurements", 
          "nanoparticles", 
          "thermal equilibrium", 
          "capacity measurements", 
          "Al2O3", 
          "microcalorimeter", 
          "measurements", 
          "capacity", 
          "temperature", 
          "method", 
          "water", 
          "fluid", 
          "scanning", 
          "ethylene", 
          "model", 
          "fraction", 
          "equilibrium", 
          "laboratory", 
          "vessels", 
          "function", 
          "cells"
        ], 
        "name": "Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids", 
        "pagination": "1615-1625", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031715389"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-012-2534-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-012-2534-9", 
          "https://app.dimensions.ai/details/publication/pub.1031715389"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_564.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10973-012-2534-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-012-2534-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-012-2534-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-012-2534-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-012-2534-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    201 TRIPLES      21 PREDICATES      78 URIs      56 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-012-2534-9 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:0306
    4 anzsrc-for:0399
    5 schema:author N5da0a2bb5a3d4076866f200fb45202df
    6 schema:citation sg:pub.10.1007/bf00500786
    7 sg:pub.10.1007/s10404-009-0524-4
    8 sg:pub.10.1007/s10973-008-9185-x
    9 sg:pub.10.1007/s10973-009-0498-1
    10 sg:pub.10.1007/s10973-010-1169-y
    11 sg:pub.10.1007/s11051-008-9500-2
    12 sg:pub.10.1007/s11051-009-9657-3
    13 sg:pub.10.1007/s11051-009-9658-2
    14 sg:pub.10.1007/s11671-010-9638-6
    15 sg:pub.10.1023/a:1013774922355
    16 sg:pub.10.1023/a:1022318416775
    17 sg:pub.10.1186/1556-276x-6-124
    18 schema:datePublished 2012-07-03
    19 schema:datePublishedReg 2012-07-03
    20 schema:description Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.
    21 schema:genre article
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N605c9f2c6340498698f2c05bf07aa938
    24 Nc57b65c5a1b94eadb5990aa39c576e8c
    25 sg:journal.1294862
    26 schema:keywords Al2O3
    27 Al2O3 nanofluid
    28 Hamilton–Crosser model
    29 base fluid
    30 batch cell
    31 calorimetric vessel
    32 capacity
    33 capacity measurements
    34 cells
    35 coaxial cylinder method
    36 conductivity
    37 conductivity measurements
    38 continuous method
    39 cylinder method
    40 equilibrium
    41 ethylene
    42 fluid
    43 fraction
    44 function
    45 heat capacity
    46 heat capacity measurements
    47 laboratory
    48 measurements
    49 method
    50 microcalorimeter
    51 model
    52 nanofluids
    53 nanoparticles
    54 particle volume fraction
    55 scanning
    56 specific heat capacity
    57 specific heat capacity measurements
    58 steady-state coaxial cylinders method
    59 temperature
    60 thermal conductivity
    61 thermal conductivity measurements
    62 thermal equilibrium
    63 vessels
    64 volume fraction
    65 water
    66 schema:name Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids
    67 schema:pagination 1615-1625
    68 schema:productId Ne67b4edf483a4c26bf59734175aad31a
    69 Nfcbcfa3803b3406db54cdfda9bd44d33
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031715389
    71 https://doi.org/10.1007/s10973-012-2534-9
    72 schema:sdDatePublished 2022-12-01T06:30
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N07a5539dc1324a82b10e255c6e4b5f24
    75 schema:url https://doi.org/10.1007/s10973-012-2534-9
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N07a5539dc1324a82b10e255c6e4b5f24 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N19fcfaa41ce44f3cb06911b589f9e8d6 rdf:first sg:person.01052711125.01
    82 rdf:rest N6f98db5828ee43f69e34f83dd82e2656
    83 N5da0a2bb5a3d4076866f200fb45202df rdf:first sg:person.01115017026.32
    84 rdf:rest Na49cc4e75e054f83abb3dc295f9eafb3
    85 N605c9f2c6340498698f2c05bf07aa938 schema:issueNumber 2
    86 rdf:type schema:PublicationIssue
    87 N6f98db5828ee43f69e34f83dd82e2656 rdf:first sg:person.012212573741.24
    88 rdf:rest Nce715271562c4b80aed02b715c843a1e
    89 Na02b9f21eae14fdf9b1015eab1f61c24 rdf:first sg:person.01274063266.07
    90 rdf:rest N19fcfaa41ce44f3cb06911b589f9e8d6
    91 Na49cc4e75e054f83abb3dc295f9eafb3 rdf:first sg:person.012031754735.94
    92 rdf:rest Ndbff068dc2c64181bf6f456cc88b9bf3
    93 Nc57b65c5a1b94eadb5990aa39c576e8c schema:volumeNumber 111
    94 rdf:type schema:PublicationVolume
    95 Nce715271562c4b80aed02b715c843a1e rdf:first sg:person.013467055631.74
    96 rdf:rest rdf:nil
    97 Ndbff068dc2c64181bf6f456cc88b9bf3 rdf:first sg:person.012337274147.87
    98 rdf:rest Na02b9f21eae14fdf9b1015eab1f61c24
    99 Ne67b4edf483a4c26bf59734175aad31a schema:name dimensions_id
    100 schema:value pub.1031715389
    101 rdf:type schema:PropertyValue
    102 Nfcbcfa3803b3406db54cdfda9bd44d33 schema:name doi
    103 schema:value 10.1007/s10973-012-2534-9
    104 rdf:type schema:PropertyValue
    105 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Chemical Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Macromolecular and Materials Chemistry
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Physical Chemistry (incl. Structural)
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Other Chemical Sciences
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1294862 schema:issn 1388-6150
    118 1572-8943
    119 schema:name Journal of Thermal Analysis and Calorimetry
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.01052711125.01 schema:affiliation grid-institutes:grid.6312.6
    123 schema:familyName Piñeiro
    124 schema:givenName Manuel M.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052711125.01
    126 rdf:type schema:Person
    127 sg:person.01115017026.32 schema:affiliation grid-institutes:grid.5239.d
    128 schema:familyName Barbés
    129 schema:givenName Benigno
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115017026.32
    131 rdf:type schema:Person
    132 sg:person.012031754735.94 schema:affiliation grid-institutes:grid.5239.d
    133 schema:familyName Páramo
    134 schema:givenName Ricardo
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031754735.94
    136 rdf:type schema:Person
    137 sg:person.012212573741.24 schema:affiliation grid-institutes:grid.6312.6
    138 schema:familyName Legido
    139 schema:givenName José Luis
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212573741.24
    141 rdf:type schema:Person
    142 sg:person.012337274147.87 schema:affiliation grid-institutes:grid.10863.3c
    143 schema:familyName Blanco
    144 schema:givenName Eduardo
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337274147.87
    146 rdf:type schema:Person
    147 sg:person.01274063266.07 schema:affiliation grid-institutes:grid.6312.6
    148 schema:familyName Pastoriza-Gallego
    149 schema:givenName María José
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274063266.07
    151 rdf:type schema:Person
    152 sg:person.013467055631.74 schema:affiliation grid-institutes:grid.5239.d
    153 schema:familyName Casanova
    154 schema:givenName Carlos
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013467055631.74
    156 rdf:type schema:Person
    157 sg:pub.10.1007/bf00500786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008226834
    158 https://doi.org/10.1007/bf00500786
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s10404-009-0524-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021381358
    161 https://doi.org/10.1007/s10404-009-0524-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10973-008-9185-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002906749
    164 https://doi.org/10.1007/s10973-008-9185-x
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10973-009-0498-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046114303
    167 https://doi.org/10.1007/s10973-009-0498-1
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s10973-010-1169-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027481171
    170 https://doi.org/10.1007/s10973-010-1169-y
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11051-008-9500-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039720130
    173 https://doi.org/10.1007/s11051-008-9500-2
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11051-009-9657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952917
    176 https://doi.org/10.1007/s11051-009-9657-3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11051-009-9658-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013973504
    179 https://doi.org/10.1007/s11051-009-9658-2
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11671-010-9638-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016051714
    182 https://doi.org/10.1007/s11671-010-9638-6
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1023/a:1013774922355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641926
    185 https://doi.org/10.1023/a:1013774922355
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1023/a:1022318416775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022913485
    188 https://doi.org/10.1023/a:1022318416775
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1556-276x-6-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006703563
    191 https://doi.org/10.1186/1556-276x-6-124
    192 rdf:type schema:CreativeWork
    193 grid-institutes:grid.10863.3c schema:alternateName Área de Mecánica de Fluidos, Universidad de Oviedo, 33271, Gijón, Spain
    194 schema:name Área de Mecánica de Fluidos, Universidad de Oviedo, 33271, Gijón, Spain
    195 rdf:type schema:Organization
    196 grid-institutes:grid.5239.d schema:alternateName Departamento de Física Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain
    197 schema:name Departamento de Física Aplicada, Universidad de Valladolid, 47005, Valladolid, Spain
    198 rdf:type schema:Organization
    199 grid-institutes:grid.6312.6 schema:alternateName Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain
    200 schema:name Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, 36310, Vigo, Spain
    201 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...