Ontology type: schema:ScholarlyArticle
2011-04
AUTHORSJavier Tarrío-Saavedra, Salvador Naya, Mario Francisco-Fernández, Jorge López-Beceiro, Ramón Artiaga
ABSTRACTIn this study, thermogravimetric (TG) and differential scanning calorimetry (DSC) curves, obtained by means of a simultaneous TG/DSC analyzer, and statistical functional nonparametric methods are used to classify different wood species. The temperature ranges, where the highest probability of correct classification is reached, are also computed. As each observation is a curve, a nonparametric functional discriminant technique based on the Bayes rule and the Nadaraya–Watson regression estimator is used. It assigns a future observation to the highest probability predefined class (supervised classification). The smoothing parameter needed in this nonparametric method is selected according to the cross-validation technique. The method proposed is applied to a sample of 49 wood items (7 per wood class) and also to classify between hardwoods and softwoods. In all the cases, the samples have been successfully classified, obtaining better results with the TG curves. The results are compared with those obtained with other nonparametric methods based on boosting algorithm. A discussion about the relation of the obtained results with the referenced wood component degradation temperature ranks is presented. More... »
PAGES87-100
http://scigraph.springernature.com/pub.10.1007/s10973-010-1157-2
DOIhttp://dx.doi.org/10.1007/s10973-010-1157-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015725438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"Departamento de Matem\u00e1ticas. Facultad de Inform\u00e1tica, Universidade da Coru\u00f1a, Corunna, Spain"
],
"type": "Organization"
},
"familyName": "Tarr\u00edo-Saavedra",
"givenName": "Javier",
"id": "sg:person.010527411315.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"Departamento de Matem\u00e1ticas. Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Corunna, Spain"
],
"type": "Organization"
},
"familyName": "Naya",
"givenName": "Salvador",
"id": "sg:person.010043463111.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"Departamento de Matem\u00e1ticas. Facultad de Inform\u00e1tica, Universidade da Coru\u00f1a, Corunna, Spain"
],
"type": "Organization"
},
"familyName": "Francisco-Fern\u00e1ndez",
"givenName": "Mario",
"id": "sg:person.01027153607.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"Departamento de Ingenier\u00eda Industrial II. Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Corunna, Spain"
],
"type": "Organization"
},
"familyName": "L\u00f3pez-Beceiro",
"givenName": "Jorge",
"id": "sg:person.07766551031.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of A Coru\u00f1a",
"id": "https://www.grid.ac/institutes/grid.8073.c",
"name": [
"Departamento de Ingenier\u00eda Industrial II. Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Corunna, Spain"
],
"type": "Organization"
},
"familyName": "Artiaga",
"givenName": "Ram\u00f3n",
"id": "sg:person.011361512031.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/b98886",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005163290",
"https://doi.org/10.1007/b98886"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/b98886",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005163290",
"https://doi.org/10.1007/b98886"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/b98886",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005163290",
"https://doi.org/10.1007/b98886"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0016-2361(96)00030-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008533944"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1386-1425(99)00088-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009048065"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.2478/s11696-009-0109-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011710975",
"https://doi.org/10.2478/s11696-009-0109-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ef0502397",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012909256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ef0502397",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012909256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0165-2370(03)00065-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013277561"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0165-2370(03)00065-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013277561"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-009-0374-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022838522",
"https://doi.org/10.1007/s10973-009-0374-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-009-0374-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022838522",
"https://doi.org/10.1007/s10973-009-0374-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0165-2370(96)00932-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025131625"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0584-8539(94)80207-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029401152"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02345-3_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029941634",
"https://doi.org/10.1007/978-3-642-02345-3_35"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02345-3_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029941634",
"https://doi.org/10.1007/978-3-642-02345-3_35"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.biotechadv.2009.04.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040391933"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1365-3180.2008.00598.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040595181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1365-3180.2008.00598.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040595181"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02595706",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047578333",
"https://doi.org/10.1007/bf02595706"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02595706",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047578333",
"https://doi.org/10.1007/bf02595706"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/07-sts242",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049744920"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0010-2180(70)80037-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050145679"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ie0201157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055596114"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ie0201157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055596114"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/jf051066m",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055903946"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/jf051066m",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055903946"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcc.2009.2039479",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061798201"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1366/0003702011953108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065255654"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1366/0003702011953108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065255654"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4028/www.scientific.net/msf.514-516.1452",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072122223"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/9789812816955_0005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1088767897"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icit.2004.1490171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093670123"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iecon.2006.347618",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095694100"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iecon.2006.347618",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095694100"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-04",
"datePublishedReg": "2011-04-01",
"description": "In this study, thermogravimetric (TG) and differential scanning calorimetry (DSC) curves, obtained by means of a simultaneous TG/DSC analyzer, and statistical functional nonparametric methods are used to classify different wood species. The temperature ranges, where the highest probability of correct classification is reached, are also computed. As each observation is a curve, a nonparametric functional discriminant technique based on the Bayes rule and the Nadaraya\u2013Watson regression estimator is used. It assigns a future observation to the highest probability predefined class (supervised classification). The smoothing parameter needed in this nonparametric method is selected according to the cross-validation technique. The method proposed is applied to a sample of 49 wood items (7 per wood class) and also to classify between hardwoods and softwoods. In all the cases, the samples have been successfully classified, obtaining better results with the TG curves. The results are compared with those obtained with other nonparametric methods based on boosting algorithm. A discussion about the relation of the obtained results with the referenced wood component degradation temperature ranks is presented.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10973-010-1157-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1294862",
"issn": [
"1388-6150",
"1572-8943"
],
"name": "Journal of Thermal Analysis and Calorimetry",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "104"
}
],
"name": "Functional nonparametric classification of wood species from thermal data",
"pagination": "87-100",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"4aed19038b05948802a97dca0f5854a06beb2638652a59900ae3e2ffcc1893dd"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10973-010-1157-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015725438"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10973-010-1157-2",
"https://app.dimensions.ai/details/publication/pub.1015725438"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T02:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10973-010-1157-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-010-1157-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-010-1157-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-010-1157-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-010-1157-2'
This table displays all metadata directly associated to this object as RDF triples.
165 TRIPLES
21 PREDICATES
50 URIs
19 LITERALS
7 BLANK NODES