Ontology type: schema:ScholarlyArticle
2007-09-22
AUTHORSV. Šepelák, P. Heitjans, K. D. Becker
ABSTRACTAmong the many types of preparation and processing techniques, the nonconventional mechanochemical route has been recognized as a powerful method for the production of novel, high-performance, and low-cost nanomaterials. Because of their small constituent sizes and disordered structural state, nanoscale materials prepared by mechanochemical route are inherently unstable with respect to structural changes at elevated temperatures. Taking into account the considerable relevance of the thermal stability of nanoscale complex oxides to nanoscience and nanotechnology, in the present work, results on the response of mechanochemically prepared MgFe2O4 and NiFe2O4 to changes in temperature will be presented. Several interesting features are involved in the work, e.g., a relaxation of the mechanically induced cation distribution towards its equilibrium configuration, a disappearance of the superparamagnetism on heating, an increase of both the saturation magnetization and the Néel temperature with increasing particle size, and a core-shell structure of nanoparticles. More... »
PAGES93-97
http://scigraph.springernature.com/pub.10.1007/s10973-007-8481-1
DOIhttp://dx.doi.org/10.1007/s10973-007-8481-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1011989526
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353, Ko\u0161ice, Slovakia",
"id": "http://www.grid.ac/institutes/grid.511127.1",
"name": [
"Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany",
"Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany",
"Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353, Ko\u0161ice, Slovakia"
],
"type": "Organization"
},
"familyName": "\u0160epel\u00e1k",
"givenName": "V.",
"id": "sg:person.01244535331.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244535331.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.9122.8",
"name": [
"Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany",
"Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany"
],
"type": "Organization"
},
"familyName": "Heitjans",
"givenName": "P.",
"id": "sg:person.01241535266.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241535266.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.9122.8",
"name": [
"Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany",
"Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany"
],
"type": "Organization"
},
"familyName": "Becker",
"givenName": "K. D.",
"id": "sg:person.01362677655.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362677655.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10751-006-9251-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008814184",
"https://doi.org/10.1007/s10751-006-9251-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-23814-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031969065",
"https://doi.org/10.1007/0-387-23814-x"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-09-22",
"datePublishedReg": "2007-09-22",
"description": "Among the many types of preparation and processing techniques, the nonconventional mechanochemical route has been recognized as a powerful method for the production of novel, high-performance, and low-cost nanomaterials. Because of their small constituent sizes and disordered structural state, nanoscale materials prepared by mechanochemical route are inherently unstable with respect to structural changes at elevated temperatures. Taking into account the considerable relevance of the thermal stability of nanoscale complex oxides to nanoscience and nanotechnology, in the present work, results on the response of mechanochemically prepared MgFe2O4 and NiFe2O4 to changes in temperature will be presented. Several interesting features are involved in the work, e.g., a relaxation of the mechanically induced cation distribution towards its equilibrium configuration, a disappearance of the superparamagnetism on heating, an increase of both the saturation magnetization and the N\u00e9el temperature with increasing particle size, and a core-shell structure of nanoparticles.",
"genre": "article",
"id": "sg:pub.10.1007/s10973-007-8481-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1294862",
"issn": [
"1388-6150",
"1572-8943"
],
"name": "Journal of Thermal Analysis and Calorimetry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "90"
}
],
"keywords": [
"mechanochemical route",
"low-cost nanomaterials",
"core-shell structure",
"nanoscale materials",
"saturation magnetization",
"spinel ferrites",
"particle size",
"complex oxides",
"processing techniques",
"elevated temperatures",
"thermal stability",
"cation distribution",
"nanomaterials",
"nanotechnology",
"nanoparticles",
"nanoscience",
"constituent size",
"route",
"superparamagnetism",
"structural state",
"present work",
"temperature",
"powerful method",
"size",
"oxide",
"ferrite",
"equilibrium configuration",
"heating",
"magnetization",
"materials",
"interesting features",
"preparation",
"stability",
"work",
"configuration",
"N\u00e9el temperature",
"technique",
"considerable relevance",
"structure",
"structural changes",
"production",
"method",
"distribution",
"relaxation",
"account",
"results",
"respect",
"increase",
"features",
"types",
"changes",
"state",
"response",
"type of preparation",
"disappearance",
"relevance"
],
"name": "Nanoscale spinel ferrites prepared by mechanochemical route",
"pagination": "93-97",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1011989526"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10973-007-8481-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10973-007-8481-1",
"https://app.dimensions.ai/details/publication/pub.1011989526"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_448.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10973-007-8481-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-007-8481-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-007-8481-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-007-8481-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-007-8481-1'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
22 PREDICATES
83 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10973-007-8481-1 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N677ec3ae2e4b4d75996f71629c7a9857 |
4 | ″ | schema:citation | sg:pub.10.1007/0-387-23814-x |
5 | ″ | ″ | sg:pub.10.1007/s10751-006-9251-3 |
6 | ″ | schema:datePublished | 2007-09-22 |
7 | ″ | schema:datePublishedReg | 2007-09-22 |
8 | ″ | schema:description | Among the many types of preparation and processing techniques, the nonconventional mechanochemical route has been recognized as a powerful method for the production of novel, high-performance, and low-cost nanomaterials. Because of their small constituent sizes and disordered structural state, nanoscale materials prepared by mechanochemical route are inherently unstable with respect to structural changes at elevated temperatures. Taking into account the considerable relevance of the thermal stability of nanoscale complex oxides to nanoscience and nanotechnology, in the present work, results on the response of mechanochemically prepared MgFe2O4 and NiFe2O4 to changes in temperature will be presented. Several interesting features are involved in the work, e.g., a relaxation of the mechanically induced cation distribution towards its equilibrium configuration, a disappearance of the superparamagnetism on heating, an increase of both the saturation magnetization and the Néel temperature with increasing particle size, and a core-shell structure of nanoparticles. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Ncf56795a7cb241b1a2a087182644626b |
13 | ″ | ″ | Ne30588750f074a2fbc4a37321653e24f |
14 | ″ | ″ | sg:journal.1294862 |
15 | ″ | schema:keywords | Néel temperature |
16 | ″ | ″ | account |
17 | ″ | ″ | cation distribution |
18 | ″ | ″ | changes |
19 | ″ | ″ | complex oxides |
20 | ″ | ″ | configuration |
21 | ″ | ″ | considerable relevance |
22 | ″ | ″ | constituent size |
23 | ″ | ″ | core-shell structure |
24 | ″ | ″ | disappearance |
25 | ″ | ″ | distribution |
26 | ″ | ″ | elevated temperatures |
27 | ″ | ″ | equilibrium configuration |
28 | ″ | ″ | features |
29 | ″ | ″ | ferrite |
30 | ″ | ″ | heating |
31 | ″ | ″ | increase |
32 | ″ | ″ | interesting features |
33 | ″ | ″ | low-cost nanomaterials |
34 | ″ | ″ | magnetization |
35 | ″ | ″ | materials |
36 | ″ | ″ | mechanochemical route |
37 | ″ | ″ | method |
38 | ″ | ″ | nanomaterials |
39 | ″ | ″ | nanoparticles |
40 | ″ | ″ | nanoscale materials |
41 | ″ | ″ | nanoscience |
42 | ″ | ″ | nanotechnology |
43 | ″ | ″ | oxide |
44 | ″ | ″ | particle size |
45 | ″ | ″ | powerful method |
46 | ″ | ″ | preparation |
47 | ″ | ″ | present work |
48 | ″ | ″ | processing techniques |
49 | ″ | ″ | production |
50 | ″ | ″ | relaxation |
51 | ″ | ″ | relevance |
52 | ″ | ″ | respect |
53 | ″ | ″ | response |
54 | ″ | ″ | results |
55 | ″ | ″ | route |
56 | ″ | ″ | saturation magnetization |
57 | ″ | ″ | size |
58 | ″ | ″ | spinel ferrites |
59 | ″ | ″ | stability |
60 | ″ | ″ | state |
61 | ″ | ″ | structural changes |
62 | ″ | ″ | structural state |
63 | ″ | ″ | structure |
64 | ″ | ″ | superparamagnetism |
65 | ″ | ″ | technique |
66 | ″ | ″ | temperature |
67 | ″ | ″ | thermal stability |
68 | ″ | ″ | type of preparation |
69 | ″ | ″ | types |
70 | ″ | ″ | work |
71 | ″ | schema:name | Nanoscale spinel ferrites prepared by mechanochemical route |
72 | ″ | schema:pagination | 93-97 |
73 | ″ | schema:productId | Nc11800195edb4ea6857f84d42163f6ed |
74 | ″ | ″ | Nf5643168d9444e0d990089332b5fd395 |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011989526 |
76 | ″ | ″ | https://doi.org/10.1007/s10973-007-8481-1 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N28555ddff52b479a9b8c70f0269ac5fa |
80 | ″ | schema:url | https://doi.org/10.1007/s10973-007-8481-1 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N28555ddff52b479a9b8c70f0269ac5fa | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N677ec3ae2e4b4d75996f71629c7a9857 | rdf:first | sg:person.01244535331.06 |
87 | ″ | rdf:rest | Nc3c3884cc79a450c8838a7b25bc50aa9 |
88 | N6d7d30d08c9941f6a6b0bbabeea897b6 | rdf:first | sg:person.01362677655.62 |
89 | ″ | rdf:rest | rdf:nil |
90 | Nc11800195edb4ea6857f84d42163f6ed | schema:name | doi |
91 | ″ | schema:value | 10.1007/s10973-007-8481-1 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | Nc3c3884cc79a450c8838a7b25bc50aa9 | rdf:first | sg:person.01241535266.36 |
94 | ″ | rdf:rest | N6d7d30d08c9941f6a6b0bbabeea897b6 |
95 | Ncf56795a7cb241b1a2a087182644626b | schema:volumeNumber | 90 |
96 | ″ | rdf:type | schema:PublicationVolume |
97 | Ne30588750f074a2fbc4a37321653e24f | schema:issueNumber | 1 |
98 | ″ | rdf:type | schema:PublicationIssue |
99 | Nf5643168d9444e0d990089332b5fd395 | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1011989526 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Chemical Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Physical Chemistry (incl. Structural) |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1294862 | schema:issn | 1388-6150 |
109 | ″ | ″ | 1572-8943 |
110 | ″ | schema:name | Journal of Thermal Analysis and Calorimetry |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.01241535266.36 | schema:affiliation | grid-institutes:grid.9122.8 |
114 | ″ | schema:familyName | Heitjans |
115 | ″ | schema:givenName | P. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241535266.36 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.01244535331.06 | schema:affiliation | grid-institutes:grid.511127.1 |
119 | ″ | schema:familyName | Šepelák |
120 | ″ | schema:givenName | V. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244535331.06 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.01362677655.62 | schema:affiliation | grid-institutes:grid.9122.8 |
124 | ″ | schema:familyName | Becker |
125 | ″ | schema:givenName | K. D. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362677655.62 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1007/0-387-23814-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031969065 |
129 | ″ | ″ | https://doi.org/10.1007/0-387-23814-x |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1007/s10751-006-9251-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008814184 |
132 | ″ | ″ | https://doi.org/10.1007/s10751-006-9251-3 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:grid.511127.1 | schema:alternateName | Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353, Košice, Slovakia |
135 | ″ | schema:name | Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany |
136 | ″ | ″ | Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353, Košice, Slovakia |
137 | ″ | ″ | Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany |
138 | ″ | rdf:type | schema:Organization |
139 | grid-institutes:grid.9122.8 | schema:alternateName | Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany |
140 | ″ | ″ | Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany |
141 | ″ | schema:name | Center for Solid State Chemistry and New Materials, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany |
142 | ″ | ″ | Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3A, 30167, Hannover, Germany |
143 | ″ | ″ | Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany |
144 | ″ | rdf:type | schema:Organization |