The effect of Zr loading in Zr/TiO2 prepared by pressurized hot water on its surface, morphological and photocatalytic properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Jaroslav Lang, Lenka Matějová, Zdeněk Matěj, Libor Čapek, Alexandr Martaus, Martin Kormunda

ABSTRACT

Zr/TiO2 anatase photocatalysts with 0.5, 1, 2, 5 and 7.5 mol.% Zr were prepared using pressurized hot water crystallization and their photocatalytic activity was explored in acid orange 7 photodegradation. Parent TiO2 was also prepared and tested. From all tested photocatalysts, 2 mol.% Zr/TiO2 showed the highest photoactivity, and 7.5 mol.% Zr/TiO2 showed the lowest photoactivity. The poor photoactivity of 7.5 mol.% Zr/TiO2 can be explained by the amorphous ZrO2 present in the surface layer (~1–3 μm depth) of TiO2 anatase nanocrystallite agregates which changed the aggregate morphology and shielded the anatase nanocrystallite surface. The type and amount of defects (e.g., oxygen vacancies, lattice defects) did not effect the photoactivity of Zr/TiO2 in AO7 photodegradation. The addition of Zr to TiO2 significantly affects the photocatalyst morphology and the location where amorphous ZrO2 forms. The optimal Zr loading in TiO2 was determined to be 2 mol.%. The type and amount of defects do no effect the Zr/TiO2 photoactivity.Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface.Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivityZr4+ dopation in TiO2 affects crucially photocatalyst morphology.2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation. The type and amount of defects do no effect the Zr/TiO2 photoactivity. Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface. Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivity Zr4+ dopation in TiO2 affects crucially photocatalyst morphology. 2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10971-019-04956-x

DOI

http://dx.doi.org/10.1007/s10971-019-04956-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918797


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Ostrava", 
          "id": "https://www.grid.ac/institutes/grid.440850.d", 
          "name": [
            "Institute of Environmental Technology, V\u0160B\u2013Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Jaroslav", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Ostrava", 
          "id": "https://www.grid.ac/institutes/grid.440850.d", 
          "name": [
            "Institute of Environmental Technology, V\u0160B\u2013Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mat\u011bjov\u00e1", 
        "givenName": "Lenka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "MAX IV Laboratory, Lund University, Fotongatan 2, 225 92, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mat\u011bj", 
        "givenName": "Zden\u011bk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pardubice", 
          "id": "https://www.grid.ac/institutes/grid.11028.3a", 
          "name": [
            "Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentsk\u00e1 573, 532 10, Pardubice, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u010capek", 
        "givenName": "Libor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Ostrava", 
          "id": "https://www.grid.ac/institutes/grid.440850.d", 
          "name": [
            "Institute of Environmental Technology, V\u0160B\u2013Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martaus", 
        "givenName": "Alexandr", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Faculty of Science, Jan Evangelista Purkyn\u011b University, Pasteurova 1, 400 96, \u00dast\u00ed nad Labem, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kormunda", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.saa.2015.04.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001613159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochemrev.2012.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002272922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2007.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.085119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003223750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.085119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003223750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2011.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006212524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2014.07.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007242752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2009.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008680916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0885715614000852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009040649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2011.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011082489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10971-015-3949-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012121085", 
          "https://doi.org/10.1007/s10971-015-3949-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.03.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013750772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11164-015-1985-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014645599", 
          "https://doi.org/10.1007/s11164-015-1985-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2008.11.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015491962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2003.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017542414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2003.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017542414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2004.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018195198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018238677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.08.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019509528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2011.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019935772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2015.04.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020313885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2009.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021133858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2016.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021390443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/clen.201200341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023182859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2012.07.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023766817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-5061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303378", 
          "https://doi.org/10.1007/978-1-4471-5061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-5061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303378", 
          "https://doi.org/10.1007/978-1-4471-5061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2012.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025583960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2016.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026727932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739476001551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028010813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2013.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028433651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2007.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028521124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.07.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030797667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2008.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031587495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mseb.2010.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032338682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ibiod.2015.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035708850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1154/1.3392371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038367593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2015.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040138795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2011.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042141439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp01111b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046740589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2013.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052991824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01269a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055787826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp064454f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp064454f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.356306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057975302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15407/ujpe59.03.0246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067797371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15407/ujpe59.03.0246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067797371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2017.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090345144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2017.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090659039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2017.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090835166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091232400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2017.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099602430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2018.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101533646"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "Zr/TiO2 anatase photocatalysts with 0.5, 1, 2, 5 and 7.5 mol.% Zr were prepared using pressurized hot water crystallization and their photocatalytic activity was explored in acid orange 7 photodegradation. Parent TiO2 was also prepared and tested. From all tested photocatalysts, 2 mol.% Zr/TiO2 showed the highest photoactivity, and 7.5 mol.% Zr/TiO2 showed the lowest photoactivity. The poor photoactivity of 7.5 mol.% Zr/TiO2 can be explained by the amorphous ZrO2 present in the surface layer (~1\u20133 \u03bcm depth) of TiO2 anatase nanocrystallite agregates which changed the aggregate morphology and shielded the anatase nanocrystallite surface. The type and amount of defects (e.g., oxygen vacancies, lattice defects) did not effect the photoactivity of Zr/TiO2 in AO7 photodegradation. The addition of Zr to TiO2 significantly affects the photocatalyst morphology and the location where amorphous ZrO2 forms. The optimal Zr loading in TiO2 was determined to be 2 mol.%.  The type and amount of defects do no effect the Zr/TiO2 photoactivity.Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface.Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivityZr4+ dopation in TiO2 affects crucially photocatalyst morphology.2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation. The type and amount of defects do no effect the Zr/TiO2 photoactivity. Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface. Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivity Zr4+ dopation in TiO2 affects crucially photocatalyst morphology. 2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10971-019-04956-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6879592", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6905941", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048337", 
        "issn": [
          "0928-0707", 
          "1573-4846"
        ], 
        "name": "Journal of Sol-Gel Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "The effect of Zr loading in Zr/TiO2 prepared by pressurized hot water on its surface, morphological and photocatalytic properties", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7748b75777258dfbcf9b36075723ee5ddceca0910f1fb91d8c4a96258f6cc54e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10971-019-04956-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918797"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10971-019-04956-x", 
      "https://app.dimensions.ai/details/publication/pub.1112918797"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72850_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10971-019-04956-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10971-019-04956-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10971-019-04956-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10971-019-04956-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10971-019-04956-x'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      73 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10971-019-04956-x schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N69b51579497a488c99fc83540eea3871
4 schema:citation sg:pub.10.1007/978-1-4471-5061-9
5 sg:pub.10.1007/s10971-015-3949-0
6 sg:pub.10.1007/s11164-015-1985-6
7 https://doi.org/10.1002/clen.201200341
8 https://doi.org/10.1016/j.apcata.2004.01.015
9 https://doi.org/10.1016/j.apcata.2009.12.025
10 https://doi.org/10.1016/j.apcata.2011.11.014
11 https://doi.org/10.1016/j.apcatb.2003.11.010
12 https://doi.org/10.1016/j.apcatb.2007.01.014
13 https://doi.org/10.1016/j.apcatb.2008.05.015
14 https://doi.org/10.1016/j.apcatb.2009.08.020
15 https://doi.org/10.1016/j.apcatb.2011.12.012
16 https://doi.org/10.1016/j.apcatb.2013.07.032
17 https://doi.org/10.1016/j.apcatb.2015.11.013
18 https://doi.org/10.1016/j.apcatb.2017.12.005
19 https://doi.org/10.1016/j.apsusc.2013.08.111
20 https://doi.org/10.1016/j.apsusc.2015.07.213
21 https://doi.org/10.1016/j.apsusc.2016.03.192
22 https://doi.org/10.1016/j.apsusc.2016.07.030
23 https://doi.org/10.1016/j.apt.2011.09.003
24 https://doi.org/10.1016/j.cej.2012.07.093
25 https://doi.org/10.1016/j.diamond.2016.03.012
26 https://doi.org/10.1016/j.ibiod.2015.12.017
27 https://doi.org/10.1016/j.ijhydene.2015.05.004
28 https://doi.org/10.1016/j.jhazmat.2008.11.090
29 https://doi.org/10.1016/j.jhazmat.2011.07.034
30 https://doi.org/10.1016/j.jphotochem.2013.08.018
31 https://doi.org/10.1016/j.jphotochem.2016.06.029
32 https://doi.org/10.1016/j.jphotochem.2017.07.004
33 https://doi.org/10.1016/j.jphotochemrev.2012.06.001
34 https://doi.org/10.1016/j.jssc.2012.12.018
35 https://doi.org/10.1016/j.matchemphys.2007.06.012
36 https://doi.org/10.1016/j.materresbull.2015.04.060
37 https://doi.org/10.1016/j.materresbull.2017.07.010
38 https://doi.org/10.1016/j.materresbull.2017.07.023
39 https://doi.org/10.1016/j.mseb.2010.07.001
40 https://doi.org/10.1016/j.rser.2017.08.020
41 https://doi.org/10.1016/j.saa.2014.07.070
42 https://doi.org/10.1016/j.saa.2015.04.101
43 https://doi.org/10.1016/j.supflu.2018.03.002
44 https://doi.org/10.1017/s0885715614000852
45 https://doi.org/10.1021/ja01269a023
46 https://doi.org/10.1021/jp064454f
47 https://doi.org/10.1039/c4cp01111b
48 https://doi.org/10.1063/1.356306
49 https://doi.org/10.1103/physrevb.81.085119
50 https://doi.org/10.1107/s0567739476001551
51 https://doi.org/10.1154/1.3392371
52 https://doi.org/10.15407/ujpe59.03.0246
53 schema:datePublished 2019-03-21
54 schema:datePublishedReg 2019-03-21
55 schema:description Zr/TiO2 anatase photocatalysts with 0.5, 1, 2, 5 and 7.5 mol.% Zr were prepared using pressurized hot water crystallization and their photocatalytic activity was explored in acid orange 7 photodegradation. Parent TiO2 was also prepared and tested. From all tested photocatalysts, 2 mol.% Zr/TiO2 showed the highest photoactivity, and 7.5 mol.% Zr/TiO2 showed the lowest photoactivity. The poor photoactivity of 7.5 mol.% Zr/TiO2 can be explained by the amorphous ZrO2 present in the surface layer (~1–3 μm depth) of TiO2 anatase nanocrystallite agregates which changed the aggregate morphology and shielded the anatase nanocrystallite surface. The type and amount of defects (e.g., oxygen vacancies, lattice defects) did not effect the photoactivity of Zr/TiO2 in AO7 photodegradation. The addition of Zr to TiO2 significantly affects the photocatalyst morphology and the location where amorphous ZrO2 forms. The optimal Zr loading in TiO2 was determined to be 2 mol.%. The type and amount of defects do no effect the Zr/TiO2 photoactivity.Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface.Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivityZr4+ dopation in TiO2 affects crucially photocatalyst morphology.2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation. The type and amount of defects do no effect the Zr/TiO2 photoactivity. Amorphous ZrO2 in surface layer of TiO2 agregates shields the anatase nanocrystallites surface. Amorphous ZrO2 in surface layer of TiO2 agregates decreases the Zr/TiO2 anatase photoactivity Zr4+ dopation in TiO2 affects crucially photocatalyst morphology. 2 mol.% Zr/TiO2 shows the highest photoactivity in acid orange 7 degradation.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf sg:journal.1048337
60 schema:name The effect of Zr loading in Zr/TiO2 prepared by pressurized hot water on its surface, morphological and photocatalytic properties
61 schema:pagination 1-11
62 schema:productId N3f0a2a01162a4caf94aacdb5005c3290
63 N90145df483be430c8bd4c623557a1a85
64 N9be3446e4d524e40a68af26a5068add6
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918797
66 https://doi.org/10.1007/s10971-019-04956-x
67 schema:sdDatePublished 2019-04-11T12:53
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N50bc778ed25a4ade98e51ae34462077f
70 schema:url https://link.springer.com/10.1007%2Fs10971-019-04956-x
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N18a1362a01e7473194e6e721ac616b64 rdf:first N475e19b600f2405fa9a22043c5e8c322
75 rdf:rest rdf:nil
76 N2986cd145cd445ccbc1cab95672daff4 rdf:first N83aee78c18e6473eaed7eb48553b9d15
77 rdf:rest N90de4532454d4573b51dc4dbfebe690d
78 N3f0a2a01162a4caf94aacdb5005c3290 schema:name dimensions_id
79 schema:value pub.1112918797
80 rdf:type schema:PropertyValue
81 N475e19b600f2405fa9a22043c5e8c322 schema:affiliation Ncebea60170ae4b6a939b2d4afd4f50b6
82 schema:familyName Kormunda
83 schema:givenName Martin
84 rdf:type schema:Person
85 N50bc778ed25a4ade98e51ae34462077f schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N62f4e8ed1cad455baaf024bd50e7b3b8 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
88 schema:familyName Matěj
89 schema:givenName Zdeněk
90 rdf:type schema:Person
91 N69b51579497a488c99fc83540eea3871 rdf:first Nf0fb86262fb04f9c9ac0918314d70fc4
92 rdf:rest N2986cd145cd445ccbc1cab95672daff4
93 N83aee78c18e6473eaed7eb48553b9d15 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
94 schema:familyName Matějová
95 schema:givenName Lenka
96 rdf:type schema:Person
97 N90145df483be430c8bd4c623557a1a85 schema:name readcube_id
98 schema:value 7748b75777258dfbcf9b36075723ee5ddceca0910f1fb91d8c4a96258f6cc54e
99 rdf:type schema:PropertyValue
100 N90de4532454d4573b51dc4dbfebe690d rdf:first N62f4e8ed1cad455baaf024bd50e7b3b8
101 rdf:rest N958846158a774d0c9f6e0aa3b5185114
102 N958846158a774d0c9f6e0aa3b5185114 rdf:first Ncbd4299305e14d93a8a6c1905729cf9c
103 rdf:rest Ne4ea768922084e5bb44b7852364d858f
104 N9be3446e4d524e40a68af26a5068add6 schema:name doi
105 schema:value 10.1007/s10971-019-04956-x
106 rdf:type schema:PropertyValue
107 Ncbd4299305e14d93a8a6c1905729cf9c schema:affiliation https://www.grid.ac/institutes/grid.11028.3a
108 schema:familyName Čapek
109 schema:givenName Libor
110 rdf:type schema:Person
111 Ncebea60170ae4b6a939b2d4afd4f50b6 schema:name Department of Physics, Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 1, 400 96, Ústí nad Labem, Czech Republic
112 rdf:type schema:Organization
113 Ne4ea768922084e5bb44b7852364d858f rdf:first Nfb71faf4807d47708c6fce6c30f635e8
114 rdf:rest N18a1362a01e7473194e6e721ac616b64
115 Nf0fb86262fb04f9c9ac0918314d70fc4 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
116 schema:familyName Lang
117 schema:givenName Jaroslav
118 rdf:type schema:Person
119 Nfb71faf4807d47708c6fce6c30f635e8 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
120 schema:familyName Martaus
121 schema:givenName Alexandr
122 rdf:type schema:Person
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
127 schema:name Environmental Engineering
128 rdf:type schema:DefinedTerm
129 sg:grant.6879592 http://pending.schema.org/fundedItem sg:pub.10.1007/s10971-019-04956-x
130 rdf:type schema:MonetaryGrant
131 sg:grant.6905941 http://pending.schema.org/fundedItem sg:pub.10.1007/s10971-019-04956-x
132 rdf:type schema:MonetaryGrant
133 sg:journal.1048337 schema:issn 0928-0707
134 1573-4846
135 schema:name Journal of Sol-Gel Science and Technology
136 rdf:type schema:Periodical
137 sg:pub.10.1007/978-1-4471-5061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303378
138 https://doi.org/10.1007/978-1-4471-5061-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10971-015-3949-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012121085
141 https://doi.org/10.1007/s10971-015-3949-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11164-015-1985-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014645599
144 https://doi.org/10.1007/s11164-015-1985-6
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/clen.201200341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023182859
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.apcata.2004.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018195198
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.apcata.2009.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008680916
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.apcata.2011.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019935772
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.apcatb.2003.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017542414
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.apcatb.2007.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028521124
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.apcatb.2008.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587495
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.apcatb.2009.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021133858
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.apcatb.2011.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042141439
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.apcatb.2013.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052991824
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.apcatb.2015.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040138795
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.apcatb.2017.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099602430
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.apsusc.2013.08.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019509528
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.apsusc.2015.07.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030797667
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.apsusc.2016.03.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013750772
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.apsusc.2016.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018238677
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.apt.2011.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006212524
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.cej.2012.07.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023766817
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.diamond.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021390443
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ibiod.2015.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035708850
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ijhydene.2015.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095026
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jhazmat.2008.11.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015491962
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jhazmat.2011.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011082489
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jphotochem.2013.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028433651
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jphotochem.2016.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026727932
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jphotochem.2017.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090345144
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jphotochemrev.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002272922
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jssc.2012.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025583960
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.matchemphys.2007.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482202
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.materresbull.2015.04.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020313885
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.materresbull.2017.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090659039
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.materresbull.2017.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090835166
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.mseb.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032338682
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.rser.2017.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091232400
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.saa.2014.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242752
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.saa.2015.04.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001613159
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.supflu.2018.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101533646
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1017/s0885715614000852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040649
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/ja01269a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055787826
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/jp064454f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056067533
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1039/c4cp01111b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046740589
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.356306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057975302
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevb.81.085119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003223750
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1107/s0567739476001551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028010813
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1154/1.3392371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038367593
235 rdf:type schema:CreativeWork
236 https://doi.org/10.15407/ujpe59.03.0246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067797371
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.11028.3a schema:alternateName University of Pardubice
239 schema:name Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.440850.d schema:alternateName Technical University of Ostrava
242 schema:name Institute of Environmental Technology, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00, Ostrava-Poruba, Czech Republic
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
245 schema:name MAX IV Laboratory, Lund University, Fotongatan 2, 225 92, Lund, Sweden
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...