Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

B. Jansi Rani, G. Ravi, R. Yuvakkumar, S. Ravichandran, Fuad Ameen, A. Al-Sabri

ABSTRACT

Solvothermal synthesis of pristine and Zn-doped NiO nanocluster electrocatalysts have been synthesized for efficient electrochemical water splitting applications. Cubic structure with lattice constant of 4.16 A° was revealed through XRD analysis. Presence of oxygen vacancy was confirmed by employing PL study. Nanosheets combined feather like nanocluster morphology was obtained for optimized electrocatalysts. Variation in optical absorption and energy band gap was observed for undoped and Zn-doped NiO electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s scan rate was obtained for 10% Zn-doped NiO nanoclusters. Improved oxygen evolution was achieved for the same electrocatalysts by addressing the current density of 0.77 mA/g at 10 mV/s with lowest Tafel slope of 75 mV/decade. Higher conductivity with lower internal resistance (Rs) of 10.36 Ω was obtained for the above optimized electrocatalyst. Practically applicable stability over 12 h of 10% Zn-doped NiO nanocluster electrocatalyst was proposed for efficient electrochemical water splitting applications. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained.Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s.Obtained higher conductivity with lower internal resistance (Rs) of 10.36 Ω. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained. Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s. Obtained higher conductivity with lower internal resistance (Rs) of 10.36 Ω. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10971-018-4886-5

DOI

http://dx.doi.org/10.1007/s10971-018-4886-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110203267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Alagappa University", 
          "id": "https://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Department of Physics, Nanomaterials Laboratory, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rani", 
        "givenName": "B. Jansi", 
        "id": "sg:person.014557477226.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557477226.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alagappa University", 
          "id": "https://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Department of Physics, Nanomaterials Laboratory, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ravi", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alagappa University", 
          "id": "https://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Department of Physics, Nanomaterials Laboratory, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuvakkumar", 
        "givenName": "R.", 
        "id": "sg:person.01124712542.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124712542.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Electrochemical Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.417628.e", 
          "name": [
            "Electro Inorganic Division, CSIR\u2013Central Electrochemical Research Institute (CSIR\u2013CECRI), 630003, Karaikudi, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ravichandran", 
        "givenName": "S.", 
        "id": "sg:person.015067005546.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067005546.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Saud University", 
          "id": "https://www.grid.ac/institutes/grid.56302.32", 
          "name": [
            "Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ameen", 
        "givenName": "Fuad", 
        "id": "sg:person.01251660323.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251660323.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Saud University", 
          "id": "https://www.grid.ac/institutes/grid.56302.32", 
          "name": [
            "Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Sabri", 
        "givenName": "A.", 
        "id": "sg:person.0642502623.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642502623.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jelechem.2013.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001601565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.08.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002944380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mssp.2015.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2010.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007141074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0603395103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010525037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2016.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010949871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp3007415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012810828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja104587v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012828941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja104587v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012828941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-0024-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013839805", 
          "https://doi.org/10.1007/s12274-010-0024-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-0024-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013839805", 
          "https://doi.org/10.1007/s12274-010-0024-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/23/20/205801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019130876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1856988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020781602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1856988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020781602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(02)00400-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021668412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(90)85068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024947083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-015-0965-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029226519", 
          "https://doi.org/10.1007/s12274-015-0965-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1838349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034054183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(84)85004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034063620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cctc.201000126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cctc.201000126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100246c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036505265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100246c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036505265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.09.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038541002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr30302g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040533710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra17041a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040912533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-017-1974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810064", 
          "https://doi.org/10.1007/s11581-017-1974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-017-1974-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810064", 
          "https://doi.org/10.1007/s11581-017-1974-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2016.08.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045104216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2016.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045274133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2009.09.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046073306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6528/aa53f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049573479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mssp.2011.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051964938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr1002326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053233064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr1002326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053233064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja206280g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055850640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja206280g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055850640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1742616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057805068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.2.3112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.2.3112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18052/www.scipress.com/ilcpa.15.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068563351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6859-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027617", 
          "https://doi.org/10.1007/s10854-017-6859-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6859-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027617", 
          "https://doi.org/10.1007/s10854-017-6859-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mutage/gex007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084186655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jechem.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085915592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.06.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086140734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cssc.201701262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091505870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr04302c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091890721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-017-2588-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091918589", 
          "https://doi.org/10.1007/s11837-017-2588-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2018.14549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092044291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2017.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092417628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.11.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092956796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2017.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093137178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mseb.2017.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100166830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2018.01.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100749938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201704073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101528707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2018.04.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103230212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2018.04.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103230212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2018.04.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103597332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2018.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103639342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Solvothermal synthesis of pristine and Zn-doped NiO nanocluster electrocatalysts have been synthesized for efficient electrochemical water splitting applications. Cubic structure with lattice constant of 4.16 A\u00b0 was revealed through XRD analysis. Presence of oxygen vacancy was confirmed by employing PL study. Nanosheets combined feather like nanocluster morphology was obtained for optimized electrocatalysts. Variation in optical absorption and energy band gap was observed for undoped and Zn-doped NiO electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s scan rate was obtained for 10% Zn-doped NiO nanoclusters. Improved oxygen evolution was achieved for the same electrocatalysts by addressing the current density of 0.77 mA/g at 10 mV/s with lowest Tafel slope of 75 mV/decade. Higher conductivity with lower internal resistance (Rs) of 10.36 \u03a9 was obtained for the above optimized electrocatalyst. Practically applicable stability over 12 h of 10% Zn-doped NiO nanocluster electrocatalyst was proposed for efficient electrochemical water splitting applications. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained.Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s.Obtained higher conductivity with lower internal resistance (Rs) of 10.36 \u03a9. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained. Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s. Obtained higher conductivity with lower internal resistance (Rs) of 10.36 \u03a9.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10971-018-4886-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048337", 
        "issn": [
          "0928-0707", 
          "1573-4846"
        ], 
        "name": "Journal of Sol-Gel Science and Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55491ff4bb69f75590e0a105e01468200bc02e3593d25c36c79de54711d9c792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10971-018-4886-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110203267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10971-018-4886-5", 
      "https://app.dimensions.ai/details/publication/pub.1110203267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000274_0000000274/records_37044_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10971-018-4886-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10971-018-4886-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10971-018-4886-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10971-018-4886-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10971-018-4886-5'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      75 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10971-018-4886-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na88cb47f2d6045ed9d4c7c2cbbe43a5d
4 schema:citation sg:pub.10.1007/s10854-017-6859-9
5 sg:pub.10.1007/s11581-017-1974-4
6 sg:pub.10.1007/s11837-017-2588-z
7 sg:pub.10.1007/s12274-010-0024-6
8 sg:pub.10.1007/s12274-015-0965-x
9 https://doi.org/10.1002/cctc.201000126
10 https://doi.org/10.1002/cssc.201701262
11 https://doi.org/10.1002/smll.201704073
12 https://doi.org/10.1016/0013-4686(84)85004-5
13 https://doi.org/10.1016/0013-4686(90)85068-x
14 https://doi.org/10.1016/j.apenergy.2017.11.069
15 https://doi.org/10.1016/j.cej.2018.04.156
16 https://doi.org/10.1016/j.elecom.2010.04.013
17 https://doi.org/10.1016/j.ijhydene.2017.10.051
18 https://doi.org/10.1016/j.ijhydene.2018.04.029
19 https://doi.org/10.1016/j.jallcom.2009.09.146
20 https://doi.org/10.1016/j.jallcom.2015.09.227
21 https://doi.org/10.1016/j.jallcom.2017.06.249
22 https://doi.org/10.1016/j.jallcom.2018.01.298
23 https://doi.org/10.1016/j.jcis.2016.03.013
24 https://doi.org/10.1016/j.jclepro.2018.04.110
25 https://doi.org/10.1016/j.jechem.2017.05.003
26 https://doi.org/10.1016/j.jelechem.2013.06.020
27 https://doi.org/10.1016/j.jiec.2017.11.037
28 https://doi.org/10.1016/j.jmmm.2015.08.082
29 https://doi.org/10.1016/j.mseb.2017.12.032
30 https://doi.org/10.1016/j.mssp.2011.01.001
31 https://doi.org/10.1016/j.mssp.2015.06.017
32 https://doi.org/10.1016/j.rinp.2016.11.031
33 https://doi.org/10.1016/j.snb.2016.08.088
34 https://doi.org/10.1016/s0378-7753(02)00400-7
35 https://doi.org/10.1021/cr1002326
36 https://doi.org/10.1021/cr100246c
37 https://doi.org/10.1021/ja104587v
38 https://doi.org/10.1021/ja206280g
39 https://doi.org/10.1021/jp3007415
40 https://doi.org/10.1039/c2nr30302g
41 https://doi.org/10.1039/c5ra17041a
42 https://doi.org/10.1039/c7nr04302c
43 https://doi.org/10.1063/1.1742616
44 https://doi.org/10.1073/pnas.0603395103
45 https://doi.org/10.1088/0953-8984/23/20/205801
46 https://doi.org/10.1088/1361-6528/aa53f3
47 https://doi.org/10.1093/mutage/gex007
48 https://doi.org/10.1103/physrevb.2.3112
49 https://doi.org/10.1103/physrevb.49.17293
50 https://doi.org/10.1149/1.1838349
51 https://doi.org/10.1149/1.1856988
52 https://doi.org/10.1166/jnn.2018.14549
53 https://doi.org/10.18052/www.scipress.com/ilcpa.15.137
54 schema:datePublished 2019-02
55 schema:datePublishedReg 2019-02-01
56 schema:description Solvothermal synthesis of pristine and Zn-doped NiO nanocluster electrocatalysts have been synthesized for efficient electrochemical water splitting applications. Cubic structure with lattice constant of 4.16 A° was revealed through XRD analysis. Presence of oxygen vacancy was confirmed by employing PL study. Nanosheets combined feather like nanocluster morphology was obtained for optimized electrocatalysts. Variation in optical absorption and energy band gap was observed for undoped and Zn-doped NiO electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s scan rate was obtained for 10% Zn-doped NiO nanoclusters. Improved oxygen evolution was achieved for the same electrocatalysts by addressing the current density of 0.77 mA/g at 10 mV/s with lowest Tafel slope of 75 mV/decade. Higher conductivity with lower internal resistance (Rs) of 10.36 Ω was obtained for the above optimized electrocatalyst. Practically applicable stability over 12 h of 10% Zn-doped NiO nanocluster electrocatalyst was proposed for efficient electrochemical water splitting applications. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Graphical abstract clearly revealed the water oxidation and electrochemical pseudo capacitive behavior of the best performed 10% Zn-doped NiO nanoclusters electrocatalysts. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained.Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s.Obtained higher conductivity with lower internal resistance (Rs) of 10.36 Ω. Highest specific capacitance of 455.74 F/g at 5 mV/s was obtained. Improved oxygen evolution was achieved by 0.77 mA/g at 10 mV/s. Obtained higher conductivity with lower internal resistance (Rs) of 10.36 Ω.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf sg:journal.1048337
61 schema:name Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications
62 schema:pagination 1-11
63 schema:productId N26c01ab29b494522b803f3d29c15d950
64 N5909a25166174347b69953405171ed9a
65 Nea035b06cf134fd9ac67debd1a904fb8
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110203267
67 https://doi.org/10.1007/s10971-018-4886-5
68 schema:sdDatePublished 2019-04-11T08:13
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd8cbbece701b4af8b0577bbc15bab662
71 schema:url https://link.springer.com/10.1007%2Fs10971-018-4886-5
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N26c01ab29b494522b803f3d29c15d950 schema:name dimensions_id
76 schema:value pub.1110203267
77 rdf:type schema:PropertyValue
78 N4ad81348565846db97e3b88393c5a1ed rdf:first sg:person.015067005546.15
79 rdf:rest Nc0105c9e10c549bdbf44067585a5a2d8
80 N5909a25166174347b69953405171ed9a schema:name doi
81 schema:value 10.1007/s10971-018-4886-5
82 rdf:type schema:PropertyValue
83 Na88cb47f2d6045ed9d4c7c2cbbe43a5d rdf:first sg:person.014557477226.47
84 rdf:rest Needb74783697429b960389e47d683b15
85 Nab8ef46cd8dd489dbd946127fe53de9c rdf:first sg:person.01124712542.15
86 rdf:rest N4ad81348565846db97e3b88393c5a1ed
87 Nc0105c9e10c549bdbf44067585a5a2d8 rdf:first sg:person.01251660323.65
88 rdf:rest Nf784e104f0294c318b621c2dc0e8a0b7
89 Nd8cbbece701b4af8b0577bbc15bab662 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Ne9086599efa4432dab7ef3213e297081 schema:affiliation https://www.grid.ac/institutes/grid.411312.4
92 schema:familyName Ravi
93 schema:givenName G.
94 rdf:type schema:Person
95 Nea035b06cf134fd9ac67debd1a904fb8 schema:name readcube_id
96 schema:value 55491ff4bb69f75590e0a105e01468200bc02e3593d25c36c79de54711d9c792
97 rdf:type schema:PropertyValue
98 Needb74783697429b960389e47d683b15 rdf:first Ne9086599efa4432dab7ef3213e297081
99 rdf:rest Nab8ef46cd8dd489dbd946127fe53de9c
100 Nf784e104f0294c318b621c2dc0e8a0b7 rdf:first sg:person.0642502623.24
101 rdf:rest rdf:nil
102 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
103 schema:name Chemical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Chemistry (incl. Structural)
107 rdf:type schema:DefinedTerm
108 sg:journal.1048337 schema:issn 0928-0707
109 1573-4846
110 schema:name Journal of Sol-Gel Science and Technology
111 rdf:type schema:Periodical
112 sg:person.01124712542.15 schema:affiliation https://www.grid.ac/institutes/grid.411312.4
113 schema:familyName Yuvakkumar
114 schema:givenName R.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124712542.15
116 rdf:type schema:Person
117 sg:person.01251660323.65 schema:affiliation https://www.grid.ac/institutes/grid.56302.32
118 schema:familyName Ameen
119 schema:givenName Fuad
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251660323.65
121 rdf:type schema:Person
122 sg:person.014557477226.47 schema:affiliation https://www.grid.ac/institutes/grid.411312.4
123 schema:familyName Rani
124 schema:givenName B. Jansi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014557477226.47
126 rdf:type schema:Person
127 sg:person.015067005546.15 schema:affiliation https://www.grid.ac/institutes/grid.417628.e
128 schema:familyName Ravichandran
129 schema:givenName S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067005546.15
131 rdf:type schema:Person
132 sg:person.0642502623.24 schema:affiliation https://www.grid.ac/institutes/grid.56302.32
133 schema:familyName Al-Sabri
134 schema:givenName A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642502623.24
136 rdf:type schema:Person
137 sg:pub.10.1007/s10854-017-6859-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027617
138 https://doi.org/10.1007/s10854-017-6859-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11581-017-1974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043810064
141 https://doi.org/10.1007/s11581-017-1974-4
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11837-017-2588-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091918589
144 https://doi.org/10.1007/s11837-017-2588-z
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12274-010-0024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013839805
147 https://doi.org/10.1007/s12274-010-0024-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s12274-015-0965-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029226519
150 https://doi.org/10.1007/s12274-015-0965-x
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/cctc.201000126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718850
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/cssc.201701262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091505870
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/smll.201704073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101528707
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0013-4686(84)85004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034063620
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0013-4686(90)85068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947083
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.apenergy.2017.11.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092956796
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cej.2018.04.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103597332
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.elecom.2010.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007141074
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijhydene.2017.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092417628
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijhydene.2018.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103639342
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jallcom.2009.09.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046073306
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jallcom.2015.09.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038541002
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jallcom.2017.06.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086140734
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.jallcom.2018.01.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100749938
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jcis.2016.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045274133
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jclepro.2018.04.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103230212
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jechem.2017.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085915592
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jelechem.2013.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001601565
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jiec.2017.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093137178
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jmmm.2015.08.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002944380
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mseb.2017.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100166830
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.mssp.2011.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051964938
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.mssp.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122508
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.rinp.2016.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010949871
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.snb.2016.08.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045104216
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0378-7753(02)00400-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021668412
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/cr1002326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053233064
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/cr100246c schema:sameAs https://app.dimensions.ai/details/publication/pub.1036505265
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/ja104587v schema:sameAs https://app.dimensions.ai/details/publication/pub.1012828941
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/ja206280g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055850640
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/jp3007415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012810828
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1039/c2nr30302g schema:sameAs https://app.dimensions.ai/details/publication/pub.1040533710
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1039/c5ra17041a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040912533
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1039/c7nr04302c schema:sameAs https://app.dimensions.ai/details/publication/pub.1091890721
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.1742616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057805068
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1073/pnas.0603395103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010525037
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1088/0953-8984/23/20/205801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019130876
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1088/1361-6528/aa53f3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049573479
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/mutage/gex007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084186655
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevb.2.3112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525895
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevb.49.17293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570455
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1149/1.1838349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034054183
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1149/1.1856988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020781602
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1166/jnn.2018.14549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092044291
239 rdf:type schema:CreativeWork
240 https://doi.org/10.18052/www.scipress.com/ilcpa.15.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068563351
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.411312.4 schema:alternateName Alagappa University
243 schema:name Department of Physics, Nanomaterials Laboratory, Alagappa University, 630003, Karaikudi, Tamil Nadu, India
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.417628.e schema:alternateName Central Electrochemical Research Institute
246 schema:name Electro Inorganic Division, CSIR–Central Electrochemical Research Institute (CSIR–CECRI), 630003, Karaikudi, Tamil Nadu, India
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.56302.32 schema:alternateName King Saud University
249 schema:name Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...