Confinement effect of silica mesopores on thermal behavior of phase change composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Zhenjin Fu, Lin Su, Meifang Liu, Jie Li, Jing Li, Zhanwen Zhang, Bo Li

ABSTRACT

SiO2-based phase change composites were prepared by sol–gel method using different phase change materials (PCMs), including stearic acid (SA), paraffin, and polyethylene glycol (PEG), and the effects of various mass fractions of PCMs were comprehensively investigated. The structures and thermal properties of these composites were characterized and analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy, and nitrogen adsorption–desorption measurements. The XRD and DSC results showed that the crystallinity and thermal enthalpy of paraffin in composite were the best among the three types of PCMs confined in SiO2. However, PEG in composites showed poor crystallinity and thermal enthalpy. After the extraction of the PCMs, the pore size distribution of SiO2 matrix and SEM images showed that SA/SiO2 composites possessed mesopores (20 nm) and macropores (50–150 nm), paraffin/SiO2 composites possessed mesopores and very large pores (2 μm), and PEG/SiO2 composites contained only mesopores. Among the three types of composites, paraffin/SiO2 composites exhibited the least mesopore volume. Presence of more mesopores in the composite led to worse crystallinity and thermal enthalpy of PCMs in composites. The crystallinity and thermal enthalpy of PCMs in composites were affected by the pore size and volume. Mesopores confined the crystallization and thermal behavior. More... »

PAGES

180-188

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10971-016-4055-7

DOI

http://dx.doi.org/10.1007/s10971-016-4055-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035816021


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China", 
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Zhenjin", 
        "id": "sg:person.011071333457.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071333457.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Lin", 
        "id": "sg:person.014074530057.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074530057.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Meifang", 
        "id": "sg:person.015446703156.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446703156.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jie", 
        "id": "sg:person.012433453657.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012433453657.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jing", 
        "id": "sg:person.010311245457.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010311245457.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhanwen", 
        "id": "sg:person.014740223657.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740223657.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Bo", 
        "id": "sg:person.010526365357.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526365357.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00396-001-0603-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001074289", 
          "https://doi.org/10.1007/s00396-001-0603-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2009.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001601370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2011.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008071190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2013.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013702891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2011.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016204180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(98)00050-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020964576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eurpolymj.2012.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025812092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030368604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2008.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2011.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031234840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2004.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042572082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2008.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043449829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2009.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044093888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(02)00192-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044929489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(02)00192-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044929489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2009.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046128416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2014.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047082820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2014.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049162074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2014.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051355916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2009.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053134711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.459240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058037251"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "SiO2-based phase change composites were prepared by sol\u2013gel method using different phase change materials (PCMs), including stearic acid (SA), paraffin, and polyethylene glycol (PEG), and the effects of various mass fractions of PCMs were comprehensively investigated. The structures and thermal properties of these composites were characterized and analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy, and nitrogen adsorption\u2013desorption measurements. The XRD and DSC results showed that the crystallinity and thermal enthalpy of paraffin in composite were the best among the three types of PCMs confined in SiO2. However, PEG in composites showed poor crystallinity and thermal enthalpy. After the extraction of the PCMs, the pore size distribution of SiO2 matrix and SEM images showed that SA/SiO2 composites possessed mesopores (20 nm) and macropores (50\u2013150 nm), paraffin/SiO2 composites possessed mesopores and very large pores (2 \u03bcm), and PEG/SiO2 composites contained only mesopores. Among the three types of composites, paraffin/SiO2 composites exhibited the least mesopore volume. Presence of more mesopores in the composite led to worse crystallinity and thermal enthalpy of PCMs in composites. The crystallinity and thermal enthalpy of PCMs in composites were affected by the pore size and volume. Mesopores confined the crystallization and thermal behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10971-016-4055-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048337", 
        "issn": [
          "0928-0707", 
          "1573-4846"
        ], 
        "name": "Journal of Sol-Gel Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Confinement effect of silica mesopores on thermal behavior of phase change composites", 
    "pagination": "180-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa9d98a530d68ed10fc76f631df45268fd43ae45f52111efe327e6f5d36534b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10971-016-4055-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035816021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10971-016-4055-7", 
      "https://app.dimensions.ai/details/publication/pub.1035816021"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10971-016-4055-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10971-016-4055-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10971-016-4055-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10971-016-4055-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10971-016-4055-7'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10971-016-4055-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0205adac0c864245b1d7465684568a84
4 schema:citation sg:pub.10.1007/s00396-001-0603-x
5 https://doi.org/10.1016/j.apenergy.2008.10.014
6 https://doi.org/10.1016/j.apenergy.2009.01.004
7 https://doi.org/10.1016/j.apenergy.2011.11.018
8 https://doi.org/10.1016/j.apenergy.2013.04.050
9 https://doi.org/10.1016/j.eurpolymj.2012.01.016
10 https://doi.org/10.1016/j.jcis.2009.11.036
11 https://doi.org/10.1016/j.matchemphys.2004.06.043
12 https://doi.org/10.1016/j.polymer.2008.04.030
13 https://doi.org/10.1016/j.rser.2009.10.015
14 https://doi.org/10.1016/j.solener.2013.08.021
15 https://doi.org/10.1016/j.solener.2014.02.042
16 https://doi.org/10.1016/j.solmat.2011.02.010
17 https://doi.org/10.1016/j.solmat.2011.03.031
18 https://doi.org/10.1016/j.solmat.2014.08.017
19 https://doi.org/10.1016/j.tca.2009.09.005
20 https://doi.org/10.1016/j.tca.2014.06.008
21 https://doi.org/10.1016/s0920-5861(98)00050-9
22 https://doi.org/10.1016/s1359-4311(02)00192-8
23 https://doi.org/10.1063/1.459240
24 schema:datePublished 2016-10
25 schema:datePublishedReg 2016-10-01
26 schema:description SiO2-based phase change composites were prepared by sol–gel method using different phase change materials (PCMs), including stearic acid (SA), paraffin, and polyethylene glycol (PEG), and the effects of various mass fractions of PCMs were comprehensively investigated. The structures and thermal properties of these composites were characterized and analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy, and nitrogen adsorption–desorption measurements. The XRD and DSC results showed that the crystallinity and thermal enthalpy of paraffin in composite were the best among the three types of PCMs confined in SiO2. However, PEG in composites showed poor crystallinity and thermal enthalpy. After the extraction of the PCMs, the pore size distribution of SiO2 matrix and SEM images showed that SA/SiO2 composites possessed mesopores (20 nm) and macropores (50–150 nm), paraffin/SiO2 composites possessed mesopores and very large pores (2 μm), and PEG/SiO2 composites contained only mesopores. Among the three types of composites, paraffin/SiO2 composites exhibited the least mesopore volume. Presence of more mesopores in the composite led to worse crystallinity and thermal enthalpy of PCMs in composites. The crystallinity and thermal enthalpy of PCMs in composites were affected by the pore size and volume. Mesopores confined the crystallization and thermal behavior.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nb0cdb0294b3846788a067d136224de69
31 Nee4aa6d64f874aeca616e53962408a0c
32 sg:journal.1048337
33 schema:name Confinement effect of silica mesopores on thermal behavior of phase change composites
34 schema:pagination 180-188
35 schema:productId N66796f2bcd1947d48fc77afbd69d3211
36 N800ae124edfd4921ba2cd51cf256b618
37 Na5a5add95b6d4228b20df6d7ec5862ba
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035816021
39 https://doi.org/10.1007/s10971-016-4055-7
40 schema:sdDatePublished 2019-04-10T13:17
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N5077734ba82649e8a09d195c8004b7fe
43 schema:url http://link.springer.com/10.1007%2Fs10971-016-4055-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0205adac0c864245b1d7465684568a84 rdf:first sg:person.011071333457.87
48 rdf:rest N4014b79921144f4fbd64523abd722676
49 N1bfe2db4193746af9925b7a3d495bc51 rdf:first sg:person.014740223657.37
50 rdf:rest Ne070d8ef8fd84fb79e3e994640b36bff
51 N1c3dfdb48ef047ee8881b02a6dfddeb5 rdf:first sg:person.010311245457.75
52 rdf:rest N1bfe2db4193746af9925b7a3d495bc51
53 N4014b79921144f4fbd64523abd722676 rdf:first sg:person.014074530057.52
54 rdf:rest N9246aff8ef6a4ae98a2a3b420c85d025
55 N5077734ba82649e8a09d195c8004b7fe schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N51ee6bc7762846099d011766d0b70723 rdf:first sg:person.012433453657.01
58 rdf:rest N1c3dfdb48ef047ee8881b02a6dfddeb5
59 N66796f2bcd1947d48fc77afbd69d3211 schema:name readcube_id
60 schema:value aa9d98a530d68ed10fc76f631df45268fd43ae45f52111efe327e6f5d36534b3
61 rdf:type schema:PropertyValue
62 N800ae124edfd4921ba2cd51cf256b618 schema:name doi
63 schema:value 10.1007/s10971-016-4055-7
64 rdf:type schema:PropertyValue
65 N9246aff8ef6a4ae98a2a3b420c85d025 rdf:first sg:person.015446703156.64
66 rdf:rest N51ee6bc7762846099d011766d0b70723
67 Na5a5add95b6d4228b20df6d7ec5862ba schema:name dimensions_id
68 schema:value pub.1035816021
69 rdf:type schema:PropertyValue
70 Nb0cdb0294b3846788a067d136224de69 schema:volumeNumber 80
71 rdf:type schema:PublicationVolume
72 Ne070d8ef8fd84fb79e3e994640b36bff rdf:first sg:person.010526365357.50
73 rdf:rest rdf:nil
74 Nee4aa6d64f874aeca616e53962408a0c schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1048337 schema:issn 0928-0707
83 1573-4846
84 schema:name Journal of Sol-Gel Science and Technology
85 rdf:type schema:Periodical
86 sg:person.010311245457.75 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
87 schema:familyName Li
88 schema:givenName Jing
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010311245457.75
90 rdf:type schema:Person
91 sg:person.010526365357.50 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
92 schema:familyName Li
93 schema:givenName Bo
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526365357.50
95 rdf:type schema:Person
96 sg:person.011071333457.87 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
97 schema:familyName Fu
98 schema:givenName Zhenjin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071333457.87
100 rdf:type schema:Person
101 sg:person.012433453657.01 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
102 schema:familyName Li
103 schema:givenName Jie
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012433453657.01
105 rdf:type schema:Person
106 sg:person.014074530057.52 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
107 schema:familyName Su
108 schema:givenName Lin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074530057.52
110 rdf:type schema:Person
111 sg:person.014740223657.37 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
112 schema:familyName Zhang
113 schema:givenName Zhanwen
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740223657.37
115 rdf:type schema:Person
116 sg:person.015446703156.64 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
117 schema:familyName Liu
118 schema:givenName Meifang
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446703156.64
120 rdf:type schema:Person
121 sg:pub.10.1007/s00396-001-0603-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001074289
122 https://doi.org/10.1007/s00396-001-0603-x
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.apenergy.2008.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043449829
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.apenergy.2009.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053134711
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.apenergy.2011.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008071190
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.apenergy.2013.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030368604
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eurpolymj.2012.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025812092
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jcis.2009.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044093888
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.matchemphys.2004.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042572082
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.polymer.2008.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030456645
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.rser.2009.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001601370
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.solener.2013.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013702891
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.solener.2014.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051355916
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.solmat.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031234840
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.solmat.2011.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016204180
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.solmat.2014.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047082820
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.tca.2009.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046128416
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.tca.2014.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162074
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0920-5861(98)00050-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020964576
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s1359-4311(02)00192-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044929489
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.459240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058037251
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.249079.1 schema:alternateName China Academy of Engineering Physics
163 schema:name Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.440649.b schema:alternateName Southwest University of Science and Technology
166 schema:name Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China
167 School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...