Comparison of low-energy and coaxial HPGe detectors for prompt gamma activation analysis of metallic samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

Boglárka Maróti, László Szentmiklósi, Tamás Belgya

ABSTRACT

In the prompt-gamma activation analysis, the spectra of multi-element metallic samples contain low-energy regions with complicated multiplets that are difficult to evaluate by fitting. This has an impact on the accuracy and precision of the final results. To overcome this, parallel measurements with Compton-suppressed coaxial HPGe and high-resolution, low-energy germanium detectors, with and without Compton-suppression, were completed in order to assess the performances of the setups under controlled conditions. The selectivities, the signal-to-background ratios and other characteristic features of the setups are compared, and the results are discussed. More... »

PAGES

743-749

References to SciGraph publications

  • 2013-12. On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 1975-03. In-beam neutron activation analysis of stainless steel and iron ore in JOURNAL OF RADIOANALYTICAL CHEMISTRY
  • 2005-07. Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM-EDX in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2008-12. Development of a neutron beam line and detector system for multiple prompt gamma-ray analysis in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2014-05. Non-invasive PGAA, PIXE and ToF-ND analyses on Hungarian Bronze Age defensive armour in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2000-05. Nondestructive Analysis of Metals by PGAA at the Budapest Research Reactor in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2016-07. Fifteen years of success: user access programs at the Budapest prompt-gamma activation analysis laboratory in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2010-11. Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2000-03. Prompt Gamma Neutron Activation Analysis of 316-L Stainless Steel in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 1997-01. Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2005-03. {\rtf1\ansi\ansicpg1250\deff0\deflang1038\deflangfe1038\deftab708{\fonttbl{\f0\froman\fprq2\fcharset238{\*\fname Times New Roman;}Times New Roman CE;}} \viewkind4\uc1\pard\f0\fs24 Digital signal processing in prompt-gamma activation analysis \par } in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10967-016-4822-5

    DOI

    http://dx.doi.org/10.1007/s10967-016-4822-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036401126


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Nuclear Analysis and Radiography Department, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Mikl\u00f3s Street, 1121, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mar\u00f3ti", 
            "givenName": "Bogl\u00e1rka", 
            "id": "sg:person.010100646142.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100646142.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Nuclear Analysis and Radiography Department, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Mikl\u00f3s Street, 1121, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szentmikl\u00f3si", 
            "givenName": "L\u00e1szl\u00f3", 
            "id": "sg:person.013142005227.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142005227.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Nuclear Analysis and Radiography Department, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Mikl\u00f3s Street, 1121, Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belgya", 
            "givenName": "Tam\u00e1s", 
            "id": "sg:person.0605627053.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605627053.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.apcata.2014.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000288869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nimb.2007.04.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001053434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-005-0809-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002356539", 
              "https://doi.org/10.1007/s10967-005-0809-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-008-1508-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003588594", 
              "https://doi.org/10.1007/s10967-008-1508-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006791710995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007961188", 
              "https://doi.org/10.1023/a:1006791710995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-014-3064-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009516778", 
              "https://doi.org/10.1007/s10967-014-3064-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2011.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009683379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-013-2555-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010735562", 
              "https://doi.org/10.1007/s10967-013-2555-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/ci.2008.30.6.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012283771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02034477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012869991", 
              "https://doi.org/10.1007/bf02034477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02034477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012869991", 
              "https://doi.org/10.1007/bf02034477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-016-4774-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021520400", 
              "https://doi.org/10.1007/s10967-016-4774-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010630622465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025211327", 
              "https://doi.org/10.1023/a:1010630622465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-005-0698-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025635382", 
              "https://doi.org/10.1007/s10967-005-0698-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4ja00398e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029338683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jiec.2015.12.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030179496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02517454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031207818", 
              "https://doi.org/10.1007/bf02517454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02517454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031207818", 
              "https://doi.org/10.1007/bf02517454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-010-0765-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041425977", 
              "https://doi.org/10.1007/s10967-010-0765-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nimb.2015.05.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042062135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-8043(01)00153-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044869143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-583x(90)90359-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046056222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-583x(90)90359-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046056222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9002(02)00902-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051411968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-583x(04)00831-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054622800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9011705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055071436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac9011705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055071436"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-11", 
        "datePublishedReg": "2016-11-01", 
        "description": "In the prompt-gamma activation analysis, the spectra of multi-element metallic samples contain low-energy regions with complicated multiplets that are difficult to evaluate by fitting. This has an impact on the accuracy and precision of the final results. To overcome this, parallel measurements with Compton-suppressed coaxial HPGe and high-resolution, low-energy germanium detectors, with and without Compton-suppression, were completed in order to assess the performances of the setups under controlled conditions. The selectivities, the signal-to-background ratios and other characteristic features of the setups are compared, and the results are discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10967-016-4822-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094634", 
            "issn": [
              "0236-5731", 
              "1588-2780"
            ], 
            "name": "Journal of Radioanalytical and Nuclear Chemistry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "310"
          }
        ], 
        "name": "Comparison of low-energy and coaxial HPGe detectors for prompt gamma activation analysis of metallic samples", 
        "pagination": "743-749", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ad66ece44071b1fd7222e63df54913485d2310df1e5ebdec8cfb6ace5896ae15"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10967-016-4822-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036401126"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10967-016-4822-5", 
          "https://app.dimensions.ai/details/publication/pub.1036401126"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10967-016-4822-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10967-016-4822-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10967-016-4822-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10967-016-4822-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10967-016-4822-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10967-016-4822-5 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N63c988a9cc3746528daf99cc8e4feb06
    4 schema:citation sg:pub.10.1007/bf02034477
    5 sg:pub.10.1007/bf02517454
    6 sg:pub.10.1007/s10967-005-0698-5
    7 sg:pub.10.1007/s10967-005-0809-3
    8 sg:pub.10.1007/s10967-008-1508-7
    9 sg:pub.10.1007/s10967-010-0765-4
    10 sg:pub.10.1007/s10967-013-2555-2
    11 sg:pub.10.1007/s10967-014-3064-7
    12 sg:pub.10.1007/s10967-016-4774-9
    13 sg:pub.10.1023/a:1006791710995
    14 sg:pub.10.1023/a:1010630622465
    15 https://doi.org/10.1016/0168-583x(90)90359-3
    16 https://doi.org/10.1016/j.apcata.2014.04.027
    17 https://doi.org/10.1016/j.jiec.2015.12.019
    18 https://doi.org/10.1016/j.nimb.2007.04.140
    19 https://doi.org/10.1016/j.nimb.2015.05.038
    20 https://doi.org/10.1016/j.scriptamat.2011.10.007
    21 https://doi.org/10.1016/s0168-583x(04)00831-6
    22 https://doi.org/10.1016/s0168-9002(02)00902-6
    23 https://doi.org/10.1016/s0969-8043(01)00153-1
    24 https://doi.org/10.1021/ac9011705
    25 https://doi.org/10.1039/c4ja00398e
    26 https://doi.org/10.1515/ci.2008.30.6.21
    27 schema:datePublished 2016-11
    28 schema:datePublishedReg 2016-11-01
    29 schema:description In the prompt-gamma activation analysis, the spectra of multi-element metallic samples contain low-energy regions with complicated multiplets that are difficult to evaluate by fitting. This has an impact on the accuracy and precision of the final results. To overcome this, parallel measurements with Compton-suppressed coaxial HPGe and high-resolution, low-energy germanium detectors, with and without Compton-suppression, were completed in order to assess the performances of the setups under controlled conditions. The selectivities, the signal-to-background ratios and other characteristic features of the setups are compared, and the results are discussed.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N6c427ab9866e406aa07fa6acb811360b
    34 Nbcc4e3a26d92466ba7d776f0599bb335
    35 sg:journal.1094634
    36 schema:name Comparison of low-energy and coaxial HPGe detectors for prompt gamma activation analysis of metallic samples
    37 schema:pagination 743-749
    38 schema:productId N1fce4614dde241cdbe34e93c7fe7c34e
    39 N430249e3c3934cfeb9889c7e461346fb
    40 Na3761731ce584768bb956f08979743cf
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036401126
    42 https://doi.org/10.1007/s10967-016-4822-5
    43 schema:sdDatePublished 2019-04-11T02:01
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N112a3ae784d5448c9789b84741fa7078
    46 schema:url http://link.springer.com/10.1007%2Fs10967-016-4822-5
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N112a3ae784d5448c9789b84741fa7078 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N1fce4614dde241cdbe34e93c7fe7c34e schema:name dimensions_id
    53 schema:value pub.1036401126
    54 rdf:type schema:PropertyValue
    55 N430249e3c3934cfeb9889c7e461346fb schema:name readcube_id
    56 schema:value ad66ece44071b1fd7222e63df54913485d2310df1e5ebdec8cfb6ace5896ae15
    57 rdf:type schema:PropertyValue
    58 N63c988a9cc3746528daf99cc8e4feb06 rdf:first sg:person.010100646142.65
    59 rdf:rest Na00b3d9890ca4a508ceb06bf4e93574b
    60 N6c427ab9866e406aa07fa6acb811360b schema:volumeNumber 310
    61 rdf:type schema:PublicationVolume
    62 N8c5db110210041f799e8c54ed37e1f66 rdf:first sg:person.0605627053.27
    63 rdf:rest rdf:nil
    64 Na00b3d9890ca4a508ceb06bf4e93574b rdf:first sg:person.013142005227.51
    65 rdf:rest N8c5db110210041f799e8c54ed37e1f66
    66 Na3761731ce584768bb956f08979743cf schema:name doi
    67 schema:value 10.1007/s10967-016-4822-5
    68 rdf:type schema:PropertyValue
    69 Nbcc4e3a26d92466ba7d776f0599bb335 schema:issueNumber 2
    70 rdf:type schema:PublicationIssue
    71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Physical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Other Physical Sciences
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1094634 schema:issn 0236-5731
    78 1588-2780
    79 schema:name Journal of Radioanalytical and Nuclear Chemistry
    80 rdf:type schema:Periodical
    81 sg:person.010100646142.65 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    82 schema:familyName Maróti
    83 schema:givenName Boglárka
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100646142.65
    85 rdf:type schema:Person
    86 sg:person.013142005227.51 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    87 schema:familyName Szentmiklósi
    88 schema:givenName László
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142005227.51
    90 rdf:type schema:Person
    91 sg:person.0605627053.27 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    92 schema:familyName Belgya
    93 schema:givenName Tamás
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605627053.27
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf02034477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012869991
    97 https://doi.org/10.1007/bf02034477
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf02517454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031207818
    100 https://doi.org/10.1007/bf02517454
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s10967-005-0698-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025635382
    103 https://doi.org/10.1007/s10967-005-0698-5
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s10967-005-0809-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002356539
    106 https://doi.org/10.1007/s10967-005-0809-3
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s10967-008-1508-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003588594
    109 https://doi.org/10.1007/s10967-008-1508-7
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10967-010-0765-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041425977
    112 https://doi.org/10.1007/s10967-010-0765-4
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10967-013-2555-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010735562
    115 https://doi.org/10.1007/s10967-013-2555-2
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10967-014-3064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009516778
    118 https://doi.org/10.1007/s10967-014-3064-7
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10967-016-4774-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021520400
    121 https://doi.org/10.1007/s10967-016-4774-9
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1023/a:1006791710995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007961188
    124 https://doi.org/10.1023/a:1006791710995
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/a:1010630622465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025211327
    127 https://doi.org/10.1023/a:1010630622465
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0168-583x(90)90359-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046056222
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.apcata.2014.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000288869
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.jiec.2015.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030179496
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.nimb.2007.04.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001053434
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.nimb.2015.05.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042062135
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.scriptamat.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009683379
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/s0168-583x(04)00831-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054622800
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/s0168-9002(02)00902-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051411968
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0969-8043(01)00153-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044869143
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1021/ac9011705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071436
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1039/c4ja00398e schema:sameAs https://app.dimensions.ai/details/publication/pub.1029338683
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1515/ci.2008.30.6.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012283771
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.5018.c schema:alternateName Hungarian Academy of Sciences
    154 schema:name Nuclear Analysis and Radiography Department, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklós Street, 1121, Budapest, Hungary
    155 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...