Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

S. G. Prolongo, R. Moriche, G. Del Rosario, A. Jiménez-Suárez, M. G. Prolongo, A. Ureña

ABSTRACT

Self-heating of conductive nanofilled resins due to the Joule effect is interesting for numerous applications, including computing, self-reparation, self-post-curing treatment of resins, fabrication of adhesive joints, de-icing coatings and so on. In this work, we study the effect of the nature and amount of graphitic nanofiller on the self-heating of epoxy composites. The addition of graphitic nanofillers induced an increase in the thermal conductivity of the epoxy resins, directly proportional to the nanofiller content. Percolation was not observed because of the heat transport through phonons. In contrast, the electrical conductivity curves present a clear percolation threshold, due to the necessity of an electrical percolation network. The electrical threshold is much lower for composites reinforced with carbon nanotubes (CNTs, 0.1 wt.%) than for the resin filled with graphene nanoplatelets (GNPs, 5 %). This fact is due to their very different specific areas. The composites filled with CNTs reach higher temperatures than the ones reinforced with GNPs, applying low electrical voltage because of their higher electrical conductivity. In contrast, the self-heating is more homogeneous for the GNP/epoxy resins due to their higher thermal conductivity. It was also confirmed that the self-heating is repetitive in several cycles, reaching the same temperature when the same voltage is applied. More... »

PAGES

189

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10965-016-1092-4

DOI

http://dx.doi.org/10.1007/s10965-016-1092-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027163842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Juan Carlos University", 
          "id": "https://www.grid.ac/institutes/grid.28479.30", 
          "name": [
            "Department of Materials Science and Engineering, Universidad Rey Juan Carlos, (Madrid), 28933, M\u00f3stoles, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prolongo", 
        "givenName": "S. G.", 
        "id": "sg:person.016354121161.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354121161.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Juan Carlos University", 
          "id": "https://www.grid.ac/institutes/grid.28479.30", 
          "name": [
            "Department of Materials Science and Engineering, Universidad Rey Juan Carlos, (Madrid), 28933, M\u00f3stoles, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriche", 
        "givenName": "R.", 
        "id": "sg:person.014376321431.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376321431.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Juan Carlos University", 
          "id": "https://www.grid.ac/institutes/grid.28479.30", 
          "name": [
            "Technological Support Center, Universidad Rey Juan Carlos, (Madrid), 28933, M\u00f3stoles, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Rosario", 
        "givenName": "G.", 
        "id": "sg:person.011214350567.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214350567.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Juan Carlos University", 
          "id": "https://www.grid.ac/institutes/grid.28479.30", 
          "name": [
            "Department of Materials Science and Engineering, Universidad Rey Juan Carlos, (Madrid), 28933, M\u00f3stoles, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jim\u00e9nez-Su\u00e1rez", 
        "givenName": "A.", 
        "id": "sg:person.016566643031.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016566643031.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Aerospace Materials and Production, E.T.S.I. Aeron\u00e1utica y del Espacio, Universidad Polit\u00e9cnica de Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prolongo", 
        "givenName": "M. G.", 
        "id": "sg:person.011144062763.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144062763.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Juan Carlos University", 
          "id": "https://www.grid.ac/institutes/grid.28479.30", 
          "name": [
            "Department of Materials Science and Engineering, Universidad Rey Juan Carlos, (Madrid), 28933, M\u00f3stoles, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ure\u00f1a", 
        "givenName": "A.", 
        "id": "sg:person.012545751113.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545751113.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compscitech.2008.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000503286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019100413", 
          "https://doi.org/10.1038/srep06684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201301926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022932634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2013.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028450839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jiec.2014.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028518681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2012.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028543315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029689316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eurpolymj.2013.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030355541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034719744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042856586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2014.10.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047650072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052145f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052145f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am405136s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055144799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2907977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057881101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684414524847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684414524847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0731684414524847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063839678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs.2012.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067966594"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Self-heating of conductive nanofilled resins due to the Joule effect is interesting for numerous applications, including computing, self-reparation, self-post-curing treatment of resins, fabrication of adhesive joints, de-icing coatings and so on. In this work, we study the effect of the nature and amount of graphitic nanofiller on the self-heating of epoxy composites. The addition of graphitic nanofillers induced an increase in the thermal conductivity of the epoxy resins, directly proportional to the nanofiller content. Percolation was not observed because of the heat transport through phonons. In contrast, the electrical conductivity curves present a clear percolation threshold, due to the necessity of an electrical percolation network. The electrical threshold is much lower for composites reinforced with carbon nanotubes (CNTs, 0.1 wt.%) than for the resin filled with graphene nanoplatelets (GNPs, 5 %). This fact is due to their very different specific areas. The composites filled with CNTs reach higher temperatures than the ones reinforced with GNPs, applying low electrical voltage because of their higher electrical conductivity. In contrast, the self-heating is more homogeneous for the GNP/epoxy resins due to their higher thermal conductivity. It was also confirmed that the self-heating is repetitive in several cycles, reaching the same temperature when the same voltage is applied.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10965-016-1092-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035177", 
        "issn": [
          "1022-9760", 
          "1572-8935"
        ], 
        "name": "Journal of Polymer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers", 
    "pagination": "189", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8165ece17ca6d2ed45d95fa6a8a6bf8cc6457f14be29180cda1509aac4035f1c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10965-016-1092-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027163842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10965-016-1092-4", 
      "https://app.dimensions.ai/details/publication/pub.1027163842"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10965-016-1092-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10965-016-1092-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10965-016-1092-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10965-016-1092-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10965-016-1092-4'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10965-016-1092-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1f836fd2226943f087fe60a53a490045
4 schema:citation sg:pub.10.1038/srep06684
5 https://doi.org/10.1002/adma.201301926
6 https://doi.org/10.1016/j.carbon.2013.07.029
7 https://doi.org/10.1016/j.carbon.2013.08.053
8 https://doi.org/10.1016/j.compscitech.2008.05.015
9 https://doi.org/10.1016/j.compscitech.2013.06.020
10 https://doi.org/10.1016/j.eurpolymj.2013.10.008
11 https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081
12 https://doi.org/10.1016/j.jiec.2014.03.022
13 https://doi.org/10.1016/j.polymer.2014.10.064
14 https://doi.org/10.1016/j.powtec.2012.01.024
15 https://doi.org/10.1016/j.progpolymsci.2009.09.003
16 https://doi.org/10.1021/am405136s
17 https://doi.org/10.1021/nl052145f
18 https://doi.org/10.1063/1.2907977
19 https://doi.org/10.1177/0731684414524847
20 https://doi.org/10.1557/mrs.2012.203
21 schema:datePublished 2016-09
22 schema:datePublishedReg 2016-09-01
23 schema:description Self-heating of conductive nanofilled resins due to the Joule effect is interesting for numerous applications, including computing, self-reparation, self-post-curing treatment of resins, fabrication of adhesive joints, de-icing coatings and so on. In this work, we study the effect of the nature and amount of graphitic nanofiller on the self-heating of epoxy composites. The addition of graphitic nanofillers induced an increase in the thermal conductivity of the epoxy resins, directly proportional to the nanofiller content. Percolation was not observed because of the heat transport through phonons. In contrast, the electrical conductivity curves present a clear percolation threshold, due to the necessity of an electrical percolation network. The electrical threshold is much lower for composites reinforced with carbon nanotubes (CNTs, 0.1 wt.%) than for the resin filled with graphene nanoplatelets (GNPs, 5 %). This fact is due to their very different specific areas. The composites filled with CNTs reach higher temperatures than the ones reinforced with GNPs, applying low electrical voltage because of their higher electrical conductivity. In contrast, the self-heating is more homogeneous for the GNP/epoxy resins due to their higher thermal conductivity. It was also confirmed that the self-heating is repetitive in several cycles, reaching the same temperature when the same voltage is applied.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N9104c9f124774534b3e876189c7793e9
28 Nf2031d7d30d74546a807eccd743229b9
29 sg:journal.1035177
30 schema:name Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers
31 schema:pagination 189
32 schema:productId N0560fd64092a44efa1a06c0fd9bf7f3a
33 Na8013fcd38834d3a83aaccc124d4794f
34 Ne52d357648d946ea9f5e7a370ae6be8c
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027163842
36 https://doi.org/10.1007/s10965-016-1092-4
37 schema:sdDatePublished 2019-04-11T12:38
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc62e219f27c14765924b646bbac61511
40 schema:url https://link.springer.com/10.1007%2Fs10965-016-1092-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0560fd64092a44efa1a06c0fd9bf7f3a schema:name readcube_id
45 schema:value 8165ece17ca6d2ed45d95fa6a8a6bf8cc6457f14be29180cda1509aac4035f1c
46 rdf:type schema:PropertyValue
47 N1f836fd2226943f087fe60a53a490045 rdf:first sg:person.016354121161.19
48 rdf:rest Naa3e1d0d1afe40f5a8ad77572b105ee0
49 N4e1810f4538748f6a396df3d513576c5 rdf:first sg:person.012545751113.98
50 rdf:rest rdf:nil
51 N6773ccf2c4db4bd2908d85bfdc69367d rdf:first sg:person.016566643031.30
52 rdf:rest N8831f827299e45dbbc6dda4646de2cf6
53 N6c8faaa6f2c64f8d8e792c7ea7142152 rdf:first sg:person.011214350567.85
54 rdf:rest N6773ccf2c4db4bd2908d85bfdc69367d
55 N8831f827299e45dbbc6dda4646de2cf6 rdf:first sg:person.011144062763.72
56 rdf:rest N4e1810f4538748f6a396df3d513576c5
57 N9104c9f124774534b3e876189c7793e9 schema:issueNumber 9
58 rdf:type schema:PublicationIssue
59 Na8013fcd38834d3a83aaccc124d4794f schema:name doi
60 schema:value 10.1007/s10965-016-1092-4
61 rdf:type schema:PropertyValue
62 Naa3e1d0d1afe40f5a8ad77572b105ee0 rdf:first sg:person.014376321431.47
63 rdf:rest N6c8faaa6f2c64f8d8e792c7ea7142152
64 Nc62e219f27c14765924b646bbac61511 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ne52d357648d946ea9f5e7a370ae6be8c schema:name dimensions_id
67 schema:value pub.1027163842
68 rdf:type schema:PropertyValue
69 Nf2031d7d30d74546a807eccd743229b9 schema:volumeNumber 23
70 rdf:type schema:PublicationVolume
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
75 schema:name Materials Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1035177 schema:issn 1022-9760
78 1572-8935
79 schema:name Journal of Polymer Research
80 rdf:type schema:Periodical
81 sg:person.011144062763.72 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
82 schema:familyName Prolongo
83 schema:givenName M. G.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144062763.72
85 rdf:type schema:Person
86 sg:person.011214350567.85 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
87 schema:familyName Del Rosario
88 schema:givenName G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214350567.85
90 rdf:type schema:Person
91 sg:person.012545751113.98 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
92 schema:familyName Ureña
93 schema:givenName A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012545751113.98
95 rdf:type schema:Person
96 sg:person.014376321431.47 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
97 schema:familyName Moriche
98 schema:givenName R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376321431.47
100 rdf:type schema:Person
101 sg:person.016354121161.19 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
102 schema:familyName Prolongo
103 schema:givenName S. G.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354121161.19
105 rdf:type schema:Person
106 sg:person.016566643031.30 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
107 schema:familyName Jiménez-Suárez
108 schema:givenName A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016566643031.30
110 rdf:type schema:Person
111 sg:pub.10.1038/srep06684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019100413
112 https://doi.org/10.1038/srep06684
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/adma.201301926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022932634
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.carbon.2013.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042856586
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.carbon.2013.08.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029689316
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compscitech.2008.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000503286
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compscitech.2013.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450839
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.eurpolymj.2013.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030355541
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034719744
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jiec.2014.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028518681
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.polymer.2014.10.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047650072
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.powtec.2012.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028543315
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.progpolymsci.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802928
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/am405136s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144799
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nl052145f schema:sameAs https://app.dimensions.ai/details/publication/pub.1051606563
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.2907977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881101
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1177/0731684414524847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063839678
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1557/mrs.2012.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067966594
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.28479.30 schema:alternateName King Juan Carlos University
147 schema:name Department of Materials Science and Engineering, Universidad Rey Juan Carlos, (Madrid), 28933, Móstoles, Spain
148 Technological Support Center, Universidad Rey Juan Carlos, (Madrid), 28933, Móstoles, Spain
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
151 schema:name Department of Aerospace Materials and Production, E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040, Madrid, Spain
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...