Free Infinite Divisibility of Free Multiplicative Mixtures of the Wigner Distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03

AUTHORS

Victor Pérez-Abreu, Noriyoshi Sakuma

ABSTRACT

Let I* and I⊞ be the classes of all classical infinitely divisible distributions and free infinitely divisible distributions, respectively, and let Λ be the Bercovici–Pata bijection between I* and I⊞. The class type W of symmetric distributions in I⊞ that can be represented as free multiplicative convolutions of the Wigner distribution is studied. A characterization of this class under the condition that the mixing distribution is 2-divisible with respect to free multiplicative convolution is given. A correspondence between symmetric distributions in I⊞ and the free counterpart under Λ of the positive distributions in I* is established. It is shown that the class type W does not include all symmetric distributions in I⊞ and that it does not coincide with the image under Λ of the mixtures of the Gaussian distribution in I*. Similar results for free multiplicative convolutions with the symmetric arcsine measure are obtained. Several well-known and new concrete examples are presented. More... »

PAGES

100-121

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10959-010-0288-5

DOI

http://dx.doi.org/10.1007/s10959-010-0288-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019338589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.454267.6", 
          "name": [
            "Department of Probability and Statistics, CIMAT, Apdo. Postal 402, 36000, Guanajuato Gto., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez-Abreu", 
        "givenName": "Victor", 
        "id": "sg:person.011433753327.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433753327.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Mathematics, Keio University, 3-14-1, Hiyoshi, 223-8522, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakuma", 
        "givenName": "Noriyoshi", 
        "id": "sg:person.013442261225.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013442261225.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-08-04507-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010332577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008643104945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020916929", 
          "https://doi.org/10.1023/a:1008643104945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008643104945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020916929", 
          "https://doi.org/10.1023/a:1008643104945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10959-007-0076-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030293459", 
          "https://doi.org/10.1007/s10959-007-0076-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6778-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039580439", 
          "https://doi.org/10.1007/978-1-4684-6778-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-09-09841-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219025709003525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062987058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219025709003653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062987071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117907000000051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-bjps039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ecp.v12-1274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064395876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177693436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2008.57.3285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2008.57.3662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm119-1-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072182097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-2010-060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072268743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511735127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109724345", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203014127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109724345"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "Let I* and I\u229e be the classes of all classical infinitely divisible distributions and free infinitely divisible distributions, respectively, and let \u039b be the Bercovici\u2013Pata bijection between I* and I\u229e. The class type W of symmetric distributions in I\u229e that can be represented as free multiplicative convolutions of the Wigner distribution is studied. A characterization of this class under the condition that the mixing distribution is 2-divisible with respect to free multiplicative convolution is given. A correspondence between symmetric distributions in I\u229e and the free counterpart under \u039b of the positive distributions in I* is established. It is shown that the class type W does not include all symmetric distributions in I\u229e and that it does not coincide with the image under \u039b of the mixtures of the Gaussian distribution in I*. Similar results for free multiplicative convolutions with the symmetric arcsine measure are obtained. Several well-known and new concrete examples are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10959-010-0288-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136853", 
        "issn": [
          "0894-9840", 
          "1572-9230"
        ], 
        "name": "Journal of Theoretical Probability", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Free Infinite Divisibility of Free Multiplicative Mixtures of the Wigner Distribution", 
    "pagination": "100-121", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c2412cad86c1a56bb4f500e9a0c3226a42d05ddb0b7c7059cfbfbf999dd90b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10959-010-0288-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019338589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10959-010-0288-5", 
      "https://app.dimensions.ai/details/publication/pub.1019338589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10959-010-0288-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10959-010-0288-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10959-010-0288-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10959-010-0288-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10959-010-0288-5'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10959-010-0288-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N791a093d8d11412f8bcb2e2547e77876
4 schema:citation sg:pub.10.1007/978-1-4684-6778-9_2
5 sg:pub.10.1007/s10959-007-0076-z
6 sg:pub.10.1023/a:1008643104945
7 https://app.dimensions.ai/details/publication/pub.1109724345
8 https://doi.org/10.1017/cbo9780511735127
9 https://doi.org/10.1090/s0002-9939-09-09841-4
10 https://doi.org/10.1090/s0002-9947-08-04507-8
11 https://doi.org/10.1142/s0219025709003525
12 https://doi.org/10.1142/s0219025709003653
13 https://doi.org/10.1201/9780203014127
14 https://doi.org/10.1214/009117907000000051
15 https://doi.org/10.1214/09-bjps039
16 https://doi.org/10.1214/aoms/1177693436
17 https://doi.org/10.1214/ecp.v12-1274
18 https://doi.org/10.1512/iumj.2008.57.3285
19 https://doi.org/10.1512/iumj.2008.57.3662
20 https://doi.org/10.2307/121080
21 https://doi.org/10.4064/cm119-1-8
22 https://doi.org/10.4153/cjm-2010-060-6
23 schema:datePublished 2012-03
24 schema:datePublishedReg 2012-03-01
25 schema:description Let I* and I⊞ be the classes of all classical infinitely divisible distributions and free infinitely divisible distributions, respectively, and let Λ be the Bercovici–Pata bijection between I* and I⊞. The class type W of symmetric distributions in I⊞ that can be represented as free multiplicative convolutions of the Wigner distribution is studied. A characterization of this class under the condition that the mixing distribution is 2-divisible with respect to free multiplicative convolution is given. A correspondence between symmetric distributions in I⊞ and the free counterpart under Λ of the positive distributions in I* is established. It is shown that the class type W does not include all symmetric distributions in I⊞ and that it does not coincide with the image under Λ of the mixtures of the Gaussian distribution in I*. Similar results for free multiplicative convolutions with the symmetric arcsine measure are obtained. Several well-known and new concrete examples are presented.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N5d8a9e61237b42f689c4a2383eb92352
30 N5e3106101fae4ad8a5e023f47e19b974
31 sg:journal.1136853
32 schema:name Free Infinite Divisibility of Free Multiplicative Mixtures of the Wigner Distribution
33 schema:pagination 100-121
34 schema:productId N43376f02e67d4bf6806b9e96015c528b
35 N5c2321187fec4ecbbbff8cdf1c1c1f1c
36 N9667b9a1560d49778bbaa5a97ea26a72
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338589
38 https://doi.org/10.1007/s10959-010-0288-5
39 schema:sdDatePublished 2019-04-10T22:44
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N8b45be5e88664d16af6cf72f1c2c46a7
42 schema:url http://link.springer.com/10.1007%2Fs10959-010-0288-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N43376f02e67d4bf6806b9e96015c528b schema:name doi
47 schema:value 10.1007/s10959-010-0288-5
48 rdf:type schema:PropertyValue
49 N5c2321187fec4ecbbbff8cdf1c1c1f1c schema:name dimensions_id
50 schema:value pub.1019338589
51 rdf:type schema:PropertyValue
52 N5d8a9e61237b42f689c4a2383eb92352 schema:volumeNumber 25
53 rdf:type schema:PublicationVolume
54 N5e3106101fae4ad8a5e023f47e19b974 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N791a093d8d11412f8bcb2e2547e77876 rdf:first sg:person.011433753327.87
57 rdf:rest Nfff1cfefdfbc4dd684d920595b7b6993
58 N8b45be5e88664d16af6cf72f1c2c46a7 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N9667b9a1560d49778bbaa5a97ea26a72 schema:name readcube_id
61 schema:value 5c2412cad86c1a56bb4f500e9a0c3226a42d05ddb0b7c7059cfbfbf999dd90b3
62 rdf:type schema:PropertyValue
63 Nfff1cfefdfbc4dd684d920595b7b6993 rdf:first sg:person.013442261225.13
64 rdf:rest rdf:nil
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136853 schema:issn 0894-9840
72 1572-9230
73 schema:name Journal of Theoretical Probability
74 rdf:type schema:Periodical
75 sg:person.011433753327.87 schema:affiliation https://www.grid.ac/institutes/grid.454267.6
76 schema:familyName Pérez-Abreu
77 schema:givenName Victor
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433753327.87
79 rdf:type schema:Person
80 sg:person.013442261225.13 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
81 schema:familyName Sakuma
82 schema:givenName Noriyoshi
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013442261225.13
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4684-6778-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039580439
86 https://doi.org/10.1007/978-1-4684-6778-9_2
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10959-007-0076-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030293459
89 https://doi.org/10.1007/s10959-007-0076-z
90 rdf:type schema:CreativeWork
91 sg:pub.10.1023/a:1008643104945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020916929
92 https://doi.org/10.1023/a:1008643104945
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1109724345 schema:CreativeWork
95 https://doi.org/10.1017/cbo9780511735127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664979
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0002-9939-09-09841-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332235
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/s0002-9947-08-04507-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010332577
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1142/s0219025709003525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062987058
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s0219025709003653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062987071
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1201/9780203014127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109724345
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/009117907000000051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389422
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1214/09-bjps039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391013
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1214/aoms/1177693436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398589
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1214/ecp.v12-1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064395876
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1512/iumj.2008.57.3285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513757
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1512/iumj.2008.57.3662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513812
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2307/121080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397538
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4064/cm119-1-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072182097
122 rdf:type schema:CreativeWork
123 https://doi.org/10.4153/cjm-2010-060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072268743
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
126 schema:name Department of Mathematics, Keio University, 3-14-1, Hiyoshi, 223-8522, Yokohama, Japan
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.454267.6 schema:alternateName Mathematics Research Center
129 schema:name Department of Probability and Statistics, CIMAT, Apdo. Postal 402, 36000, Guanajuato Gto., Mexico
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...