The Bäcklund Transform and a New Exact Solution of the Born–Infeld Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

E. Sh. Gutshabash, P. P. Kulish

ABSTRACT

We present the Lagrangian and Hamiltonian of the Born–Infeld model in Cartesian and light cone variables. Using the auto-Bäcklund transformation, we construct new solutions of the corresponding nonlinear equation. In particular, a “dressed” Barbashov–Chernikov solution is obtained. Bibliography: 18 titles.

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-019-04280-3

DOI

http://dx.doi.org/10.1007/s10958-019-04280-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113173133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint-Petersburg State University of Telecommunications", 
          "id": "https://www.grid.ac/institutes/grid.445973.8", 
          "name": [
            "The Bonch-Bruevich St.Petersburg State University of Telecommunications, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutshabash", 
        "givenName": "E. Sh.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulish", 
        "givenName": "P. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cnsns.2013.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88703-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008986566", 
          "https://doi.org/10.1007/978-3-642-88703-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1934.0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017506190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022447035", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69969-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022447035", 
          "https://doi.org/10.1007/978-3-540-69969-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69969-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022447035", 
          "https://doi.org/10.1007/978-3-540-69969-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028939668", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028939668", 
          "https://doi.org/10.1007/978-94-017-3198-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-3198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028939668", 
          "https://doi.org/10.1007/978-94-017-3198-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364014120078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491891", 
          "https://doi.org/10.1134/s0021364014120078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11006-005-0051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044406134", 
          "https://doi.org/10.1007/s11006-005-0051-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129055x01000764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062897878"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "We present the Lagrangian and Hamiltonian of the Born\u2013Infeld model in Cartesian and light cone variables. Using the auto-B\u00e4cklund transformation, we construct new solutions of the corresponding nonlinear equation. In particular, a \u201cdressed\u201d Barbashov\u2013Chernikov solution is obtained. Bibliography: 18 titles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-019-04280-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }
    ], 
    "name": "The B\u00e4cklund Transform and a New Exact Solution of the Born\u2013Infeld Model", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "653fae715a4fafd686c3730f5578eda65e5432aecaed5fdc482f5da8acf1f46d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-019-04280-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113173133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-019-04280-3", 
      "https://app.dimensions.ai/details/publication/pub.1113173133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-019-04280-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04280-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04280-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04280-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04280-3'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-019-04280-3 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5a3865eeb118404b9c36dea44ffbf264
4 schema:citation sg:pub.10.1007/978-3-540-69969-9
5 sg:pub.10.1007/978-3-642-88703-1_1
6 sg:pub.10.1007/978-94-017-3198-0
7 sg:pub.10.1007/s11006-005-0051-x
8 sg:pub.10.1134/s0021364014120078
9 https://app.dimensions.ai/details/publication/pub.1022447035
10 https://app.dimensions.ai/details/publication/pub.1028939668
11 https://doi.org/10.1016/j.cnsns.2013.09.034
12 https://doi.org/10.1098/rspa.1934.0059
13 https://doi.org/10.1142/s0129055x01000764
14 schema:datePublished 2019-04-01
15 schema:datePublishedReg 2019-04-01
16 schema:description We present the Lagrangian and Hamiltonian of the Born–Infeld model in Cartesian and light cone variables. Using the auto-Bäcklund transformation, we construct new solutions of the corresponding nonlinear equation. In particular, a “dressed” Barbashov–Chernikov solution is obtained. Bibliography: 18 titles.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1136516
21 schema:name The Bäcklund Transform and a New Exact Solution of the Born–Infeld Model
22 schema:pagination 1-8
23 schema:productId N8eef3be40da4402d9be854ef146852d5
24 Na6c09e71a6d643d8bab996ba8c8f1d54
25 Nec4d3c2eb57844aba6e36c62c4909b33
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113173133
27 https://doi.org/10.1007/s10958-019-04280-3
28 schema:sdDatePublished 2019-04-11T13:49
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nea8b904f38234d4b9dc144e51c211a09
31 schema:url https://link.springer.com/10.1007%2Fs10958-019-04280-3
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N5a3865eeb118404b9c36dea44ffbf264 rdf:first N904db89c504649fd8f87bf6065c3a30f
36 rdf:rest Nde3556f0b58442c3ba0b9d6271a32e07
37 N8eef3be40da4402d9be854ef146852d5 schema:name doi
38 schema:value 10.1007/s10958-019-04280-3
39 rdf:type schema:PropertyValue
40 N904db89c504649fd8f87bf6065c3a30f schema:affiliation https://www.grid.ac/institutes/grid.445973.8
41 schema:familyName Gutshabash
42 schema:givenName E. Sh.
43 rdf:type schema:Person
44 Na6c09e71a6d643d8bab996ba8c8f1d54 schema:name readcube_id
45 schema:value 653fae715a4fafd686c3730f5578eda65e5432aecaed5fdc482f5da8acf1f46d
46 rdf:type schema:PropertyValue
47 Nc8d65273c98044ad9cdc280464ac35f9 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
48 schema:familyName Kulish
49 schema:givenName P. P.
50 rdf:type schema:Person
51 Nde3556f0b58442c3ba0b9d6271a32e07 rdf:first Nc8d65273c98044ad9cdc280464ac35f9
52 rdf:rest rdf:nil
53 Nea8b904f38234d4b9dc144e51c211a09 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nec4d3c2eb57844aba6e36c62c4909b33 schema:name dimensions_id
56 schema:value pub.1113173133
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
62 schema:name Applied Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136516 schema:issn 1072-3374
65 1573-8795
66 schema:name Journal of Mathematical Sciences
67 rdf:type schema:Periodical
68 sg:pub.10.1007/978-3-540-69969-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022447035
69 https://doi.org/10.1007/978-3-540-69969-9
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/978-3-642-88703-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008986566
72 https://doi.org/10.1007/978-3-642-88703-1_1
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/978-94-017-3198-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028939668
75 https://doi.org/10.1007/978-94-017-3198-0
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s11006-005-0051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044406134
78 https://doi.org/10.1007/s11006-005-0051-x
79 rdf:type schema:CreativeWork
80 sg:pub.10.1134/s0021364014120078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491891
81 https://doi.org/10.1134/s0021364014120078
82 rdf:type schema:CreativeWork
83 https://app.dimensions.ai/details/publication/pub.1022447035 schema:CreativeWork
84 https://app.dimensions.ai/details/publication/pub.1028939668 schema:CreativeWork
85 https://doi.org/10.1016/j.cnsns.2013.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390648
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1098/rspa.1934.0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017506190
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1142/s0129055x01000764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062897878
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
92 schema:name St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia
93 rdf:type schema:Organization
94 https://www.grid.ac/institutes/grid.445973.8 schema:alternateName Saint-Petersburg State University of Telecommunications
95 schema:name The Bonch-Bruevich St.Petersburg State University of Telecommunications, St.Petersburg, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...