Leontovich–Fock Parabolic Equation Method in the Neumann Diffraction Problem on a Prolate Body of Revolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

A. S. Kirpichnikova, N. Ya. Kirpichnikova

ABSTRACT

This paper continues a series of publications on the shortwave diffraction of the plane wave on prolate bodies of revolution with axial symmetry in the Neumann problem. The approach, which is based on the Leontovich–Fock parabolic equation method for the two parameter asymptotic expansion of the solution, is briefly described. Two correction terms are found for the Fock’s main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the illuminated zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-019-04265-2

DOI

http://dx.doi.org/10.1007/s10958-019-04265-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirpichnikova", 
        "givenName": "A. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stirling", 
          "id": "https://www.grid.ac/institutes/grid.11918.30", 
          "name": [
            "Computing Science and Mathematics, University of Stirling, the UK, Stirling, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirpichnikova", 
        "givenName": "N. Ya.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063771012030025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003988261", 
          "https://doi.org/10.1134/s1063771012030025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01086736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004614028", 
          "https://doi.org/10.1007/bf01086736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01086736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004614028", 
          "https://doi.org/10.1007/bf01086736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01119363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006028682", 
          "https://doi.org/10.1007/bf01119363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01119363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006028682", 
          "https://doi.org/10.1007/bf01119363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19660460131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008010607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063771014040149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012083562", 
          "https://doi.org/10.1134/s1063771014040149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-016-2777-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013442789", 
          "https://doi.org/10.1007/s10958-016-2777-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-013-1504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014462082", 
          "https://doi.org/10.1007/s10958-013-1504-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160080306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019942968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160080306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019942968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063771011010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020696654", 
          "https://doi.org/10.1134/s1063771011010039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1956.1144427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061488757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109711202", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88391-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711202", 
          "https://doi.org/10.1007/978-3-642-88391-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88391-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711202", 
          "https://doi.org/10.1007/978-3-642-88391-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "This paper continues a series of publications on the shortwave diffraction of the plane wave on prolate bodies of revolution with axial symmetry in the Neumann problem. The approach, which is based on the Leontovich\u2013Fock parabolic equation method for the two parameter asymptotic expansion of the solution, is briefly described. Two correction terms are found for the Fock\u2019s main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the illuminated zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-019-04265-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }
    ], 
    "name": "Leontovich\u2013Fock Parabolic Equation Method in the Neumann Diffraction Problem on a Prolate Body of Revolution", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2417c06ed3913dde994a253be347113bc7bce45d3c3c9d4379e73ddaf5cf517"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-019-04265-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-019-04265-2", 
      "https://app.dimensions.ai/details/publication/pub.1113144108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-019-04265-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04265-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04265-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04265-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04265-2'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      36 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-019-04265-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N79133d98bd504aa6b32bdbe485dbac3f
4 schema:citation sg:pub.10.1007/978-3-642-88391-0
5 sg:pub.10.1007/bf01086736
6 sg:pub.10.1007/bf01119363
7 sg:pub.10.1007/s10958-013-1504-5
8 sg:pub.10.1007/s10958-016-2777-2
9 sg:pub.10.1134/s1063771011010039
10 sg:pub.10.1134/s1063771012030025
11 sg:pub.10.1134/s1063771014040149
12 https://app.dimensions.ai/details/publication/pub.1109711202
13 https://doi.org/10.1002/cpa.3160080306
14 https://doi.org/10.1002/zamm.19660460131
15 https://doi.org/10.1109/tap.1956.1144427
16 schema:datePublished 2019-03-30
17 schema:datePublishedReg 2019-03-30
18 schema:description This paper continues a series of publications on the shortwave diffraction of the plane wave on prolate bodies of revolution with axial symmetry in the Neumann problem. The approach, which is based on the Leontovich–Fock parabolic equation method for the two parameter asymptotic expansion of the solution, is briefly described. Two correction terms are found for the Fock’s main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the illuminated zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1136516
23 schema:name Leontovich–Fock Parabolic Equation Method in the Neumann Diffraction Problem on a Prolate Body of Revolution
24 schema:pagination 1-18
25 schema:productId N0faec0c4cc084a448e51c1c067bdbaa7
26 N4f5331b05d42428ea9a3709dd8b51933
27 Nb1ee569f82764a3caadfb3f94eef9b8d
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144108
29 https://doi.org/10.1007/s10958-019-04265-2
30 schema:sdDatePublished 2019-04-11T13:36
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N6e483bbbbb0e4ff8b9ac98ab689c0e0c
33 schema:url https://link.springer.com/10.1007%2Fs10958-019-04265-2
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0faec0c4cc084a448e51c1c067bdbaa7 schema:name dimensions_id
38 schema:value pub.1113144108
39 rdf:type schema:PropertyValue
40 N4f5331b05d42428ea9a3709dd8b51933 schema:name doi
41 schema:value 10.1007/s10958-019-04265-2
42 rdf:type schema:PropertyValue
43 N60c3d39829484c3fa8e6a102e68f2f0e schema:affiliation https://www.grid.ac/institutes/grid.11918.30
44 schema:familyName Kirpichnikova
45 schema:givenName N. Ya.
46 rdf:type schema:Person
47 N6e483bbbbb0e4ff8b9ac98ab689c0e0c schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N79133d98bd504aa6b32bdbe485dbac3f rdf:first Nf6f6ca8db74c435594da453b876b4eb0
50 rdf:rest Nc834e4c309af4990843c18305c9a83bb
51 Nb1ee569f82764a3caadfb3f94eef9b8d schema:name readcube_id
52 schema:value e2417c06ed3913dde994a253be347113bc7bce45d3c3c9d4379e73ddaf5cf517
53 rdf:type schema:PropertyValue
54 Nc834e4c309af4990843c18305c9a83bb rdf:first N60c3d39829484c3fa8e6a102e68f2f0e
55 rdf:rest rdf:nil
56 Nf6f6ca8db74c435594da453b876b4eb0 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
57 schema:familyName Kirpichnikova
58 schema:givenName A. S.
59 rdf:type schema:Person
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136516 schema:issn 1072-3374
67 1573-8795
68 schema:name Journal of Mathematical Sciences
69 rdf:type schema:Periodical
70 sg:pub.10.1007/978-3-642-88391-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711202
71 https://doi.org/10.1007/978-3-642-88391-0
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01086736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004614028
74 https://doi.org/10.1007/bf01086736
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01119363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006028682
77 https://doi.org/10.1007/bf01119363
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s10958-013-1504-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014462082
80 https://doi.org/10.1007/s10958-013-1504-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s10958-016-2777-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013442789
83 https://doi.org/10.1007/s10958-016-2777-2
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s1063771011010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020696654
86 https://doi.org/10.1134/s1063771011010039
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s1063771012030025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003988261
89 https://doi.org/10.1134/s1063771012030025
90 rdf:type schema:CreativeWork
91 sg:pub.10.1134/s1063771014040149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012083562
92 https://doi.org/10.1134/s1063771014040149
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1109711202 schema:CreativeWork
95 https://doi.org/10.1002/cpa.3160080306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019942968
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/zamm.19660460131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008010607
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tap.1956.1144427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488757
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.11918.30 schema:alternateName University of Stirling
102 schema:name Computing Science and Mathematics, University of Stirling, the UK, Stirling, UK
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
105 schema:name St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...