Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-23

AUTHORS

E. Aïdékon, Yueyun Hu, Zhan Shi

ABSTRACT

We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-019-04243-8

DOI

http://dx.doi.org/10.1007/s10958-019-04243-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112964957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Probabilit\u00e9s et Mod\u00e8les Al\u00e9atoires", 
          "id": "https://www.grid.ac/institutes/grid.463951.c", 
          "name": [
            "LPMA, Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "A\u00efd\u00e9kon", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris 13 University", 
          "id": "https://www.grid.ac/institutes/grid.11318.3a", 
          "name": [
            "LAGA, Universit\u00e9 Paris XIII, Villetaneuse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yueyun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Probabilit\u00e9s et Mod\u00e8les Al\u00e9atoires", 
          "id": "https://www.grid.ac/institutes/grid.463951.c", 
          "name": [
            "LPMA, Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Zhan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160310502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003033067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160310502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003033067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00356108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486393", 
          "https://doi.org/10.1007/bf00356108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00356108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486393", 
          "https://doi.org/10.1007/bf00356108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00356108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486393", 
          "https://doi.org/10.1007/bf00356108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019537821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0771-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041234160", 
          "https://doi.org/10.1007/978-1-4612-0771-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0771-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041234160", 
          "https://doi.org/10.1007/978-1-4612-0771-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-016-1522-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042235037", 
          "https://doi.org/10.1007/s10955-016-1522-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1937.tb02153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049075368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117906000000061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1177004604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1015345767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/9781316675779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682538"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-23", 
    "datePublishedReg": "2019-03-23", 
    "description": "We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton\u2013Watson processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-019-04243-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "238"
      }
    ], 
    "name": "Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-019-04243-8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3cf60294bb4a0a851e1dcc57ad7d4c21d6eb37a1691373cd0cf94d63da0fdc5d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112964957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-019-04243-8", 
      "https://app.dimensions.ai/details/publication/pub.1112964957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56173_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-019-04243-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04243-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04243-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04243-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04243-8'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      37 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-019-04243-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N333873245e2b4bef8212431ddc4f0b14
4 schema:citation sg:pub.10.1007/978-1-4612-0771-9
5 sg:pub.10.1007/bf00356108
6 sg:pub.10.1007/s10955-016-1522-z
7 https://doi.org/10.1002/cpa.21621
8 https://doi.org/10.1002/cpa.3160310502
9 https://doi.org/10.1017/9781316675779
10 https://doi.org/10.1090/memo/0285
11 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
12 https://doi.org/10.1214/009117906000000061
13 https://doi.org/10.1214/aoap/1177004604
14 https://doi.org/10.1214/aop/1015345767
15 schema:datePublished 2019-03-23
16 schema:datePublishedReg 2019-03-23
17 schema:description We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N4ba0986361bb4e6fa4ecaca847fb7813
22 Nda329012463c4fa19abf0e579e1c0410
23 sg:journal.1136516
24 schema:name Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields
25 schema:pagination 1-18
26 schema:productId N056079acd54e4d6881ebbacda6e4936d
27 N341961c87aca415085238e42da8abf32
28 N78d2ae0a582545eb9c99b49559007f59
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112964957
30 https://doi.org/10.1007/s10958-019-04243-8
31 schema:sdDatePublished 2019-04-15T09:18
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nff54746e9401416d9b60ddd892caca85
34 schema:url https://link.springer.com/10.1007%2Fs10958-019-04243-8
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N056079acd54e4d6881ebbacda6e4936d schema:name readcube_id
39 schema:value 3cf60294bb4a0a851e1dcc57ad7d4c21d6eb37a1691373cd0cf94d63da0fdc5d
40 rdf:type schema:PropertyValue
41 N2d4c214a139d4ddcbd8b69ce9f205ebb schema:affiliation https://www.grid.ac/institutes/grid.11318.3a
42 schema:familyName Hu
43 schema:givenName Yueyun
44 rdf:type schema:Person
45 N333873245e2b4bef8212431ddc4f0b14 rdf:first Nc787b9c83196456f85c279ee02999c4d
46 rdf:rest N6175dcc489454e4eb599be78d0fdc0e6
47 N341961c87aca415085238e42da8abf32 schema:name doi
48 schema:value 10.1007/s10958-019-04243-8
49 rdf:type schema:PropertyValue
50 N389e6394aa76409ea998895372fe1987 rdf:first Nb1f0b2861f804f6eb27a27b94b1acb62
51 rdf:rest rdf:nil
52 N4ba0986361bb4e6fa4ecaca847fb7813 schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N6175dcc489454e4eb599be78d0fdc0e6 rdf:first N2d4c214a139d4ddcbd8b69ce9f205ebb
55 rdf:rest N389e6394aa76409ea998895372fe1987
56 N78d2ae0a582545eb9c99b49559007f59 schema:name dimensions_id
57 schema:value pub.1112964957
58 rdf:type schema:PropertyValue
59 Nb1f0b2861f804f6eb27a27b94b1acb62 schema:affiliation https://www.grid.ac/institutes/grid.463951.c
60 schema:familyName Shi
61 schema:givenName Zhan
62 rdf:type schema:Person
63 Nc787b9c83196456f85c279ee02999c4d schema:affiliation https://www.grid.ac/institutes/grid.463951.c
64 schema:familyName Aïdékon
65 schema:givenName E.
66 rdf:type schema:Person
67 Nda329012463c4fa19abf0e579e1c0410 schema:volumeNumber 238
68 rdf:type schema:PublicationVolume
69 Nff54746e9401416d9b60ddd892caca85 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136516 schema:issn 1072-3374
78 1573-8795
79 schema:name Journal of Mathematical Sciences
80 rdf:type schema:Periodical
81 sg:pub.10.1007/978-1-4612-0771-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041234160
82 https://doi.org/10.1007/978-1-4612-0771-9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf00356108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007486393
85 https://doi.org/10.1007/bf00356108
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10955-016-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042235037
88 https://doi.org/10.1007/s10955-016-1522-z
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/cpa.21621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019537821
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/cpa.3160310502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003033067
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/9781316675779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682538
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1090/memo/0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343334
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049075368
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1214/009117906000000061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389311
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1214/aoap/1177004604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397876
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1214/aop/1015345767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402853
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.11318.3a schema:alternateName Paris 13 University
107 schema:name LAGA, Université Paris XIII, Villetaneuse, France
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.463951.c schema:alternateName Laboratoire de Probabilités et Modèles Aléatoires
110 schema:name LPMA, Université Pierre et Marie Curie, Paris, France
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...