Numerical Analysis of Retrial Queueing Systems with Conflict of Customers and an Unreliable Server View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-18

AUTHORS

A. Kuki, T. Bérczes, J. Sztrik, A. Kvach

ABSTRACT

In this paper a closed retrial queueing system is considered with a finite number of customers. If an arriving (primary or secondary) request finds the server busy, two modes are possible: the job is transferred to the orbit (no conflict) or the job under service is interrupted and both of them are transferred to the orbit (conflict). Jobs in the orbit can retry reaching the server after a random time. The unreliable case where the server is subject to breakdown is also investigated. These types of systems can be solved by numerical, asymptotical, and simulation methods. The novelty of the investigations is that it provides a new approach to an algorithmic solution for calculating the steady-state probabilities of the system. With the help of these probabilities the main performance measures can be computed. Several sample examples illustrate the effect of different parameters on the distribution on requests in the system. More... »

PAGES

1-11

References to SciGraph publications

  • 2016-12. A survey of retrial queueing systems in ANNALS OF OPERATIONS RESEARCH
  • 2013. Modelling Retrial-Upon-Conflict Systems with Product-Form Stochastic Petri Nets in ANALYTICAL AND STOCHASTIC MODELING TECHNIQUES AND APPLICATIONS
  • 2015. Sojourn Time Analysis of Finite Source Markov Retrial Queuing System with Collision in INFORMATION TECHNOLOGIES AND MATHEMATICAL MODELLING - QUEUEING THEORY AND APPLICATIONS
  • 2008. Retrial Queueing Systems, A Computational Approach in NONE
  • 2017. Performance Modeling of Finite-Source Retrial Queueing Systems with Collisions and Non-reliable Server Using MOSEL in DISTRIBUTED COMPUTER AND COMMUNICATION NETWORKS
  • 2014-02. An M/G/1 retrial G-queue with preemptive resume priority and collisions subject to the server breakdowns and delayed repairs in JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
  • 2014. Asymptotic Analysis of Closed Markov Retrial Queuing System with Collision in INFORMATION TECHNOLOGIES AND MATHEMATICAL MODELLING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-019-04193-1

    DOI

    http://dx.doi.org/10.1007/s10958-019-04193-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112219885


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuki", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00e9rczes", 
            "givenName": "T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sztrik", 
            "givenName": "J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tomsk State University", 
              "id": "https://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "Tomsk State University, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kvach", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.camwa.2011.03.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39408-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005163777", 
              "https://doi.org/10.1007/978-3-642-39408-9_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mcm.2004.02.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015773503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-13671-4_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017722861", 
              "https://doi.org/10.1007/978-3-319-13671-4_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jkss.2012.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017983969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-25861-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020403753", 
              "https://doi.org/10.1007/978-3-319-25861-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-015-2038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026890046", 
              "https://doi.org/10.1007/s10479-015-2038-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1027498178", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027498178", 
              "https://doi.org/10.1007/978-3-540-78725-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027498178", 
              "https://doi.org/10.1007/978-3-540-78725-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12190-013-0688-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027622267", 
              "https://doi.org/10.1007/s12190-013-0688-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4134/ckms.2010.25.4.647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045955667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217595914400053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062911803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/jimo.2011.7.655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071740001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-66836-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091552578", 
              "https://doi.org/10.1007/978-3-319-66836-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcnc.2015.7127625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094158592"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-18", 
        "datePublishedReg": "2019-02-18", 
        "description": "In this paper a closed retrial queueing system is considered with a finite number of customers. If an arriving (primary or secondary) request finds the server busy, two modes are possible: the job is transferred to the orbit (no conflict) or the job under service is interrupted and both of them are transferred to the orbit (conflict). Jobs in the orbit can retry reaching the server after a random time. The unreliable case where the server is subject to breakdown is also investigated. These types of systems can be solved by numerical, asymptotical, and simulation methods. The novelty of the investigations is that it provides a new approach to an algorithmic solution for calculating the steady-state probabilities of the system. With the help of these probabilities the main performance measures can be computed. Several sample examples illustrate the effect of different parameters on the distribution on requests in the system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-019-04193-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "237"
          }
        ], 
        "name": "Numerical Analysis of Retrial Queueing Systems with Conflict of Customers and an Unreliable Server", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d329cedc2583e63c895568fdca23bcc3e1291b8daabea4973a77b57bc23c786f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-019-04193-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112219885"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-019-04193-1", 
          "https://app.dimensions.ai/details/publication/pub.1112219885"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53022_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10958-019-04193-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04193-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04193-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04193-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-019-04193-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      21 PREDICATES      41 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-019-04193-1 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nfbde5ed9c2ea42e8b1933d2f00f6cd0b
    4 schema:citation sg:pub.10.1007/978-3-319-13671-4_38
    5 sg:pub.10.1007/978-3-319-25861-4_6
    6 sg:pub.10.1007/978-3-319-66836-9_21
    7 sg:pub.10.1007/978-3-540-78725-9
    8 sg:pub.10.1007/978-3-642-39408-9_5
    9 sg:pub.10.1007/s10479-015-2038-7
    10 sg:pub.10.1007/s12190-013-0688-7
    11 https://app.dimensions.ai/details/publication/pub.1027498178
    12 https://doi.org/10.1016/j.camwa.2011.03.109
    13 https://doi.org/10.1016/j.jkss.2012.06.002
    14 https://doi.org/10.1016/j.mcm.2004.02.046
    15 https://doi.org/10.1109/wcnc.2015.7127625
    16 https://doi.org/10.1142/s0217595914400053
    17 https://doi.org/10.3934/jimo.2011.7.655
    18 https://doi.org/10.4134/ckms.2010.25.4.647
    19 schema:datePublished 2019-02-18
    20 schema:datePublishedReg 2019-02-18
    21 schema:description In this paper a closed retrial queueing system is considered with a finite number of customers. If an arriving (primary or secondary) request finds the server busy, two modes are possible: the job is transferred to the orbit (no conflict) or the job under service is interrupted and both of them are transferred to the orbit (conflict). Jobs in the orbit can retry reaching the server after a random time. The unreliable case where the server is subject to breakdown is also investigated. These types of systems can be solved by numerical, asymptotical, and simulation methods. The novelty of the investigations is that it provides a new approach to an algorithmic solution for calculating the steady-state probabilities of the system. With the help of these probabilities the main performance measures can be computed. Several sample examples illustrate the effect of different parameters on the distribution on requests in the system.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N8d6c7c9fa1b34e7da4574cc99306ca40
    26 Na28a3ae7807042a287344ab36000d47b
    27 sg:journal.1136516
    28 schema:name Numerical Analysis of Retrial Queueing Systems with Conflict of Customers and an Unreliable Server
    29 schema:pagination 1-11
    30 schema:productId N3bb5607e0e8e4ec38dc817e9008d99f1
    31 N89346c477d7446c5a7dbd69a61b709cd
    32 Ne17ba4e37c844265b0a765e58d4606c6
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112219885
    34 https://doi.org/10.1007/s10958-019-04193-1
    35 schema:sdDatePublished 2019-04-11T11:24
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher Na94d6108bfc849dcb299013b96525fc4
    38 schema:url https://link.springer.com/10.1007%2Fs10958-019-04193-1
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N2d6695c9bb624bcdb721ff29062421f1 rdf:first N614c5c98f22d4236857b0997f5bf9801
    43 rdf:rest N4590e1b500cf4a6ab6b39a9a713b866f
    44 N32da205cee054c43bf5d635c0ae726ac schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    45 schema:familyName Bérczes
    46 schema:givenName T.
    47 rdf:type schema:Person
    48 N3bb5607e0e8e4ec38dc817e9008d99f1 schema:name readcube_id
    49 schema:value d329cedc2583e63c895568fdca23bcc3e1291b8daabea4973a77b57bc23c786f
    50 rdf:type schema:PropertyValue
    51 N4590e1b500cf4a6ab6b39a9a713b866f rdf:first N6a2e9d674a98401bbd81fe2b7dae12ca
    52 rdf:rest rdf:nil
    53 N614c5c98f22d4236857b0997f5bf9801 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    54 schema:familyName Sztrik
    55 schema:givenName J.
    56 rdf:type schema:Person
    57 N6a2e9d674a98401bbd81fe2b7dae12ca schema:affiliation https://www.grid.ac/institutes/grid.77602.34
    58 schema:familyName Kvach
    59 schema:givenName A.
    60 rdf:type schema:Person
    61 N89346c477d7446c5a7dbd69a61b709cd schema:name doi
    62 schema:value 10.1007/s10958-019-04193-1
    63 rdf:type schema:PropertyValue
    64 N8d6c7c9fa1b34e7da4574cc99306ca40 schema:volumeNumber 237
    65 rdf:type schema:PublicationVolume
    66 N936fb19fb67b4daaaa74518bac87ca75 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    67 schema:familyName Kuki
    68 schema:givenName A.
    69 rdf:type schema:Person
    70 Na28a3ae7807042a287344ab36000d47b schema:issueNumber 5
    71 rdf:type schema:PublicationIssue
    72 Na94d6108bfc849dcb299013b96525fc4 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Ne17ba4e37c844265b0a765e58d4606c6 schema:name dimensions_id
    75 schema:value pub.1112219885
    76 rdf:type schema:PropertyValue
    77 Ne2938336299e4df9955a656c9737d205 rdf:first N32da205cee054c43bf5d635c0ae726ac
    78 rdf:rest N2d6695c9bb624bcdb721ff29062421f1
    79 Nfbde5ed9c2ea42e8b1933d2f00f6cd0b rdf:first N936fb19fb67b4daaaa74518bac87ca75
    80 rdf:rest Ne2938336299e4df9955a656c9737d205
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Statistics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136516 schema:issn 1072-3374
    88 1573-8795
    89 schema:name Journal of Mathematical Sciences
    90 rdf:type schema:Periodical
    91 sg:pub.10.1007/978-3-319-13671-4_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017722861
    92 https://doi.org/10.1007/978-3-319-13671-4_38
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/978-3-319-25861-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020403753
    95 https://doi.org/10.1007/978-3-319-25861-4_6
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-319-66836-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091552578
    98 https://doi.org/10.1007/978-3-319-66836-9_21
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-540-78725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027498178
    101 https://doi.org/10.1007/978-3-540-78725-9
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-642-39408-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005163777
    104 https://doi.org/10.1007/978-3-642-39408-9_5
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10479-015-2038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026890046
    107 https://doi.org/10.1007/s10479-015-2038-7
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s12190-013-0688-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027622267
    110 https://doi.org/10.1007/s12190-013-0688-7
    111 rdf:type schema:CreativeWork
    112 https://app.dimensions.ai/details/publication/pub.1027498178 schema:CreativeWork
    113 https://doi.org/10.1016/j.camwa.2011.03.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282790
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.jkss.2012.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017983969
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.mcm.2004.02.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015773503
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/wcnc.2015.7127625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094158592
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1142/s0217595914400053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062911803
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.3934/jimo.2011.7.655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740001
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.4134/ckms.2010.25.4.647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045955667
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
    128 schema:name University of Debrecen, Debrecen, Hungary
    129 rdf:type schema:Organization
    130 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
    131 schema:name Tomsk State University, Tomsk, Russia
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...