On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-01

AUTHORS

A. M. Minarsky, A. I. Nazarov

ABSTRACT

The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5

DOI

http://dx.doi.org/10.1007/s10958-018-4121-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110281905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint Petersburg Academic University", 
          "id": "https://www.grid.ac/institutes/grid.35135.31", 
          "name": [
            "St. Petersburg Academic University, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minarsky", 
        "givenName": "A. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarov", 
        "givenName": "A. I.", 
        "id": "sg:person.014407314303.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407314303.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.spl.2012.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044854683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-014-4873-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046275878", 
          "https://doi.org/10.1007/s11425-014-4873-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579314000229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062056927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073135725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm11344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091370477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-01", 
    "datePublishedReg": "2018-12-01", 
    "description": "The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-018-4121-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }
    ], 
    "name": "On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d10581b86f1c0ea48de66e3c45816cb057130dc41bcd5946e95b852a6393628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-018-4121-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110281905"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-018-4121-5", 
      "https://app.dimensions.ai/details/publication/pub.1110281905"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000279_0000000279/records_91970_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-018-4121-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      20 PREDICATES      27 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-018-4121-5 schema:author Nab452871be9c460c8b6ec815b6644f95
2 schema:citation sg:pub.10.1007/s11425-014-4873-4
3 https://doi.org/10.1016/j.spl.2012.03.007
4 https://doi.org/10.1112/s0025579314000229
5 https://doi.org/10.4213/mzm11344
6 https://doi.org/10.5802/afst.184
7 schema:datePublished 2018-12-01
8 schema:datePublishedReg 2018-12-01
9 schema:description The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf sg:journal.1136516
14 schema:name On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems
15 schema:pagination 1-6
16 schema:productId N110c2388ee9e4d8c820885cc7890a681
17 N47c0d4ed08544907b69f419ca31fdc11
18 Ndc9197344fc643828387ef72663117c4
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110281905
20 https://doi.org/10.1007/s10958-018-4121-5
21 schema:sdDatePublished 2019-04-11T08:17
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N00dc8bb8bfa141fa82b0d95d497e6850
24 schema:url https://link.springer.com/10.1007%2Fs10958-018-4121-5
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N00dc8bb8bfa141fa82b0d95d497e6850 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N0e118e5a5bdd4b529a582886f7f3b81a rdf:first sg:person.014407314303.86
31 rdf:rest rdf:nil
32 N110c2388ee9e4d8c820885cc7890a681 schema:name doi
33 schema:value 10.1007/s10958-018-4121-5
34 rdf:type schema:PropertyValue
35 N47c0d4ed08544907b69f419ca31fdc11 schema:name readcube_id
36 schema:value 6d10581b86f1c0ea48de66e3c45816cb057130dc41bcd5946e95b852a6393628
37 rdf:type schema:PropertyValue
38 Nab452871be9c460c8b6ec815b6644f95 rdf:first Nd3e2055097e24861866520b0b0a6f86f
39 rdf:rest N0e118e5a5bdd4b529a582886f7f3b81a
40 Nd3e2055097e24861866520b0b0a6f86f schema:affiliation https://www.grid.ac/institutes/grid.35135.31
41 schema:familyName Minarsky
42 schema:givenName A. M.
43 rdf:type schema:Person
44 Ndc9197344fc643828387ef72663117c4 schema:name dimensions_id
45 schema:value pub.1110281905
46 rdf:type schema:PropertyValue
47 sg:journal.1136516 schema:issn 1072-3374
48 1573-8795
49 schema:name Journal of Mathematical Sciences
50 rdf:type schema:Periodical
51 sg:person.014407314303.86 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
52 schema:familyName Nazarov
53 schema:givenName A. I.
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407314303.86
55 rdf:type schema:Person
56 sg:pub.10.1007/s11425-014-4873-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046275878
57 https://doi.org/10.1007/s11425-014-4873-4
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1016/j.spl.2012.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044854683
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1112/s0025579314000229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056927
62 rdf:type schema:CreativeWork
63 https://doi.org/10.4213/mzm11344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091370477
64 rdf:type schema:CreativeWork
65 https://doi.org/10.5802/afst.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073135725
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
68 schema:name St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, St. Petersburg, Russia
69 rdf:type schema:Organization
70 https://www.grid.ac/institutes/grid.35135.31 schema:alternateName Saint Petersburg Academic University
71 schema:name St. Petersburg Academic University, St. Petersburg, Russia
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...