On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-01

AUTHORS

A. M. Minarsky, A. I. Nazarov

ABSTRACT

The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5

DOI

http://dx.doi.org/10.1007/s10958-018-4121-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110281905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint Petersburg Academic University", 
          "id": "https://www.grid.ac/institutes/grid.35135.31", 
          "name": [
            "St. Petersburg Academic University, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minarsky", 
        "givenName": "A. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarov", 
        "givenName": "A. I.", 
        "id": "sg:person.014407314303.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407314303.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.spl.2012.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044854683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-014-4873-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046275878", 
          "https://doi.org/10.1007/s11425-014-4873-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579314000229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062056927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073135725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm11344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091370477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-01", 
    "datePublishedReg": "2018-12-01", 
    "description": "The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-018-4121-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }
    ], 
    "name": "On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d10581b86f1c0ea48de66e3c45816cb057130dc41bcd5946e95b852a6393628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-018-4121-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110281905"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-018-4121-5", 
      "https://app.dimensions.ai/details/publication/pub.1110281905"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000279_0000000279/records_91970_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-018-4121-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4121-5'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      20 PREDICATES      27 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-018-4121-5 schema:author N8a606cbf02b14d15a665baeed3da9c74
2 schema:citation sg:pub.10.1007/s11425-014-4873-4
3 https://doi.org/10.1016/j.spl.2012.03.007
4 https://doi.org/10.1112/s0025579314000229
5 https://doi.org/10.4213/mzm11344
6 https://doi.org/10.5802/afst.184
7 schema:datePublished 2018-12-01
8 schema:datePublishedReg 2018-12-01
9 schema:description The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf sg:journal.1136516
14 schema:name On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems
15 schema:pagination 1-6
16 schema:productId N4ee0d4ed04364433a0d35066f58666b6
17 N754cdb557c63477a9c38273176eac219
18 Nfa070afae96e487f914cf93aac5e11d2
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110281905
20 https://doi.org/10.1007/s10958-018-4121-5
21 schema:sdDatePublished 2019-04-11T08:17
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N8b086e7cc7944c1686970c4c18b5d3e1
24 schema:url https://link.springer.com/10.1007%2Fs10958-018-4121-5
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N4ee0d4ed04364433a0d35066f58666b6 schema:name readcube_id
29 schema:value 6d10581b86f1c0ea48de66e3c45816cb057130dc41bcd5946e95b852a6393628
30 rdf:type schema:PropertyValue
31 N754cdb557c63477a9c38273176eac219 schema:name dimensions_id
32 schema:value pub.1110281905
33 rdf:type schema:PropertyValue
34 N8a606cbf02b14d15a665baeed3da9c74 rdf:first Nea90702f6e5f45d48a7b17d9e8160bfa
35 rdf:rest N9def0d627d484642af43b40b56f43ea8
36 N8b086e7cc7944c1686970c4c18b5d3e1 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N9def0d627d484642af43b40b56f43ea8 rdf:first sg:person.014407314303.86
39 rdf:rest rdf:nil
40 Nea90702f6e5f45d48a7b17d9e8160bfa schema:affiliation https://www.grid.ac/institutes/grid.35135.31
41 schema:familyName Minarsky
42 schema:givenName A. M.
43 rdf:type schema:Person
44 Nfa070afae96e487f914cf93aac5e11d2 schema:name doi
45 schema:value 10.1007/s10958-018-4121-5
46 rdf:type schema:PropertyValue
47 sg:journal.1136516 schema:issn 1072-3374
48 1573-8795
49 schema:name Journal of Mathematical Sciences
50 rdf:type schema:Periodical
51 sg:person.014407314303.86 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
52 schema:familyName Nazarov
53 schema:givenName A. I.
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407314303.86
55 rdf:type schema:Person
56 sg:pub.10.1007/s11425-014-4873-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046275878
57 https://doi.org/10.1007/s11425-014-4873-4
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1016/j.spl.2012.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044854683
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1112/s0025579314000229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056927
62 rdf:type schema:CreativeWork
63 https://doi.org/10.4213/mzm11344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091370477
64 rdf:type schema:CreativeWork
65 https://doi.org/10.5802/afst.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073135725
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
68 schema:name St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, St. Petersburg, Russia
69 rdf:type schema:Organization
70 https://www.grid.ac/institutes/grid.35135.31 schema:alternateName Saint Petersburg Academic University
71 schema:name St. Petersburg Academic University, St. Petersburg, Russia
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...