Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

E. P. Golubeva

ABSTRACT

The paper considers the function A(t) (0 ≤ t ≤ 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A′(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum. More... »

PAGES

595-597

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-018-4030-7

DOI

http://dx.doi.org/10.1007/s10958-018-4030-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106855717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint-Petersburg State University of Telecommunications", 
          "id": "https://www.grid.ac/institutes/grid.445973.8", 
          "name": [
            "The Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golubeva", 
        "givenName": "E. P.", 
        "id": "sg:person.013252046665.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252046665.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1943-0007929-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009261426"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The paper considers the function A(t) (0 \u2264 t \u2264 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A\u2032(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s10958-018-4030-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "234"
      }
    ], 
    "name": "Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function", 
    "pagination": "595-597", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d852c7b30a653a753ae3380395720008ca451d448f621ff7787a1c39f77c51e1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-018-4030-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106855717"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-018-4030-7", 
      "https://app.dimensions.ai/details/publication/pub.1106855717"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-018-4030-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4030-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4030-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4030-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4030-7'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-018-4030-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Neff9d9e56c9e457f9f650259f68e78f0
4 schema:citation https://doi.org/10.1090/s0002-9947-1943-0007929-6
5 schema:datePublished 2018-11
6 schema:datePublishedReg 2018-11-01
7 schema:description The paper considers the function A(t) (0 ≤ t ≤ 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A′(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum.
8 schema:genre non_research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb6c8a86ab23242a8a170e105556eafa1
12 Ne8ae7b9f9f2e4da499e707bd443b5d73
13 sg:journal.1136516
14 schema:name Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function
15 schema:pagination 595-597
16 schema:productId N54bc4bab130d46bbaf8547d310a98ba8
17 N61ff65d1a76d4d6ea487b1818c2e47a2
18 N9351f27377724bc4b56db3bcf13e27c3
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106855717
20 https://doi.org/10.1007/s10958-018-4030-7
21 schema:sdDatePublished 2019-04-10T17:35
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nd3cea354cee34d9b9089a9201ed31be4
24 schema:url http://link.springer.com/10.1007%2Fs10958-018-4030-7
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N54bc4bab130d46bbaf8547d310a98ba8 schema:name doi
29 schema:value 10.1007/s10958-018-4030-7
30 rdf:type schema:PropertyValue
31 N61ff65d1a76d4d6ea487b1818c2e47a2 schema:name readcube_id
32 schema:value d852c7b30a653a753ae3380395720008ca451d448f621ff7787a1c39f77c51e1
33 rdf:type schema:PropertyValue
34 N9351f27377724bc4b56db3bcf13e27c3 schema:name dimensions_id
35 schema:value pub.1106855717
36 rdf:type schema:PropertyValue
37 Nb6c8a86ab23242a8a170e105556eafa1 schema:issueNumber 5
38 rdf:type schema:PublicationIssue
39 Nd3cea354cee34d9b9089a9201ed31be4 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Ne8ae7b9f9f2e4da499e707bd443b5d73 schema:volumeNumber 234
42 rdf:type schema:PublicationVolume
43 Neff9d9e56c9e457f9f650259f68e78f0 rdf:first sg:person.013252046665.14
44 rdf:rest rdf:nil
45 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
46 schema:name Engineering
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
49 schema:name Materials Engineering
50 rdf:type schema:DefinedTerm
51 sg:journal.1136516 schema:issn 1072-3374
52 1573-8795
53 schema:name Journal of Mathematical Sciences
54 rdf:type schema:Periodical
55 sg:person.013252046665.14 schema:affiliation https://www.grid.ac/institutes/grid.445973.8
56 schema:familyName Golubeva
57 schema:givenName E. P.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252046665.14
59 rdf:type schema:Person
60 https://doi.org/10.1090/s0002-9947-1943-0007929-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009261426
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.445973.8 schema:alternateName Saint-Petersburg State University of Telecommunications
63 schema:name The Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...