Spectrum and Stabilization in Hyperbolic Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

A. V. Filinovskii

ABSTRACT

We study the connection between the stabilization of solutions of a mixed hyperbolic problem and spectral properties of the corresponding elliptic boundary value problem. We consider the first mixed problem for the wave equation in bounded and unbounded domains in ℝn, determine the class of its energy solutions, and represent the solutions in terms of the Bochner–Stieltjes integral. We study how the spectrum of the elliptic operator affects the behavior of local energy of a solution and describe a method which allows us to study the stabilization of solutions with the help of estimates in the spectral parameter for solutions of the stationary problem on the upper half-plane. More... »

PAGES

531-547

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-018-4027-2

DOI

http://dx.doi.org/10.1007/s10958-018-4027-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106410868


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bauman Moscow State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.61569.3d", 
          "name": [
            "Bauman Moscow State Technical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filinovskii", 
        "givenName": "A. V.", 
        "id": "sg:person.016526164667.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016526164667.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/sapm192981163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012497513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66282-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016619032", 
          "https://doi.org/10.1007/978-3-642-66282-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66282-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016619032", 
          "https://doi.org/10.1007/978-3-642-66282-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160140327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025049123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(66)90098-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038489902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049422241", 
          "https://doi.org/10.1007/bf00250710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049422241", 
          "https://doi.org/10.1007/bf00250710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072368630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072371502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072371789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072372315"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "We study the connection between the stabilization of solutions of a mixed hyperbolic problem and spectral properties of the corresponding elliptic boundary value problem. We consider the first mixed problem for the wave equation in bounded and unbounded domains in \u211dn, determine the class of its energy solutions, and represent the solutions in terms of the Bochner\u2013Stieltjes integral. We study how the spectrum of the elliptic operator affects the behavior of local energy of a solution and describe a method which allows us to study the stabilization of solutions with the help of estimates in the spectral parameter for solutions of the stationary problem on the upper half-plane.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-018-4027-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "234"
      }
    ], 
    "name": "Spectrum and Stabilization in Hyperbolic Problems", 
    "pagination": "531-547", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "63540a297d40ef16387face2ff6f56fa1c828a51a9032d7bc3f2f31884c6de3e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-018-4027-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106410868"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-018-4027-2", 
      "https://app.dimensions.ai/details/publication/pub.1106410868"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-018-4027-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4027-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4027-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4027-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-4027-2'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-018-4027-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9ceef417c7d24eeba8ce7efa4ec9317e
4 schema:citation sg:pub.10.1007/978-3-642-66282-9
5 sg:pub.10.1007/bf00250710
6 https://doi.org/10.1002/cpa.3160140327
7 https://doi.org/10.1002/sapm192981163
8 https://doi.org/10.1016/0022-247x(66)90098-9
9 https://doi.org/10.4213/mzm842
10 https://doi.org/10.4213/sm141
11 https://doi.org/10.4213/sm334
12 https://doi.org/10.4213/sm681
13 schema:datePublished 2018-10
14 schema:datePublishedReg 2018-10-01
15 schema:description We study the connection between the stabilization of solutions of a mixed hyperbolic problem and spectral properties of the corresponding elliptic boundary value problem. We consider the first mixed problem for the wave equation in bounded and unbounded domains in ℝn, determine the class of its energy solutions, and represent the solutions in terms of the Bochner–Stieltjes integral. We study how the spectrum of the elliptic operator affects the behavior of local energy of a solution and describe a method which allows us to study the stabilization of solutions with the help of estimates in the spectral parameter for solutions of the stationary problem on the upper half-plane.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nbec1ff556d144219b6d2dd3ebdea8ee2
20 Nc71309b2e1e5437f8a16feeaceba36e7
21 sg:journal.1136516
22 schema:name Spectrum and Stabilization in Hyperbolic Problems
23 schema:pagination 531-547
24 schema:productId N32fb6fd8e94f4d7e99966f588fff1e06
25 N3dede722c2c44f649d7a69dde4454209
26 N956c7a331862413eb2eea5a0ee3f6f29
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106410868
28 https://doi.org/10.1007/s10958-018-4027-2
29 schema:sdDatePublished 2019-04-11T01:06
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Ne7b5379d58f94400b8abd72bda499ae6
32 schema:url http://link.springer.com/10.1007%2Fs10958-018-4027-2
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N32fb6fd8e94f4d7e99966f588fff1e06 schema:name doi
37 schema:value 10.1007/s10958-018-4027-2
38 rdf:type schema:PropertyValue
39 N3dede722c2c44f649d7a69dde4454209 schema:name readcube_id
40 schema:value 63540a297d40ef16387face2ff6f56fa1c828a51a9032d7bc3f2f31884c6de3e
41 rdf:type schema:PropertyValue
42 N956c7a331862413eb2eea5a0ee3f6f29 schema:name dimensions_id
43 schema:value pub.1106410868
44 rdf:type schema:PropertyValue
45 N9ceef417c7d24eeba8ce7efa4ec9317e rdf:first sg:person.016526164667.79
46 rdf:rest rdf:nil
47 Nbec1ff556d144219b6d2dd3ebdea8ee2 schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 Nc71309b2e1e5437f8a16feeaceba36e7 schema:volumeNumber 234
50 rdf:type schema:PublicationVolume
51 Ne7b5379d58f94400b8abd72bda499ae6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136516 schema:issn 1072-3374
60 1573-8795
61 schema:name Journal of Mathematical Sciences
62 rdf:type schema:Periodical
63 sg:person.016526164667.79 schema:affiliation https://www.grid.ac/institutes/grid.61569.3d
64 schema:familyName Filinovskii
65 schema:givenName A. V.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016526164667.79
67 rdf:type schema:Person
68 sg:pub.10.1007/978-3-642-66282-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016619032
69 https://doi.org/10.1007/978-3-642-66282-9
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf00250710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049422241
72 https://doi.org/10.1007/bf00250710
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1002/cpa.3160140327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025049123
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1002/sapm192981163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012497513
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0022-247x(66)90098-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038489902
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4213/mzm842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072368630
81 rdf:type schema:CreativeWork
82 https://doi.org/10.4213/sm141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072371502
83 rdf:type schema:CreativeWork
84 https://doi.org/10.4213/sm334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072371789
85 rdf:type schema:CreativeWork
86 https://doi.org/10.4213/sm681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072372315
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.61569.3d schema:alternateName Bauman Moscow State Technical University
89 schema:name Bauman Moscow State Technical University, Moscow, Russia
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...