Ontology type: schema:ScholarlyArticle
2018-05
AUTHORS ABSTRACTWe present results on the existence of oscillating solutions of specific form (“quasiperiodic solutions) for a nonlinear differential equation with power nonlinearity. For oscillating solutions to third-order equations of this type, we obtain an asymptotics of extremums, which is expressed through the asymptotics of extremums of a “quasiperiodic” solution. These results clarify the asymptotic formulas for the modules of extremums of solutions obtained by the author earlier. More... »
PAGES651-655
http://scigraph.springernature.com/pub.10.1007/s10958-018-3762-8
DOIhttp://dx.doi.org/10.1007/s10958-018-3762-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101763729
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Plekhanov Russian University of Economics",
"id": "https://www.grid.ac/institutes/grid.446263.1",
"name": [
"M. V. Lomonosov Moscow State University, Moscow, Russia",
"G. V. Plekhanov Russian University of Economics, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Astashova",
"givenName": "I. V.",
"id": "sg:person.012450371632.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.3846/13926292.2016.1185043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018006398"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02412217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021785649",
"https://doi.org/10.1007/bf02412217"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13661-014-0174-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033325557",
"https://doi.org/10.1186/s13661-014-0174-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13661-014-0174-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033325557",
"https://doi.org/10.1186/s13661-014-0174-7"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1036055071",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-1808-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036055071",
"https://doi.org/10.1007/978-94-011-1808-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-1808-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036055071",
"https://doi.org/10.1007/978-94-011-1808-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.18698/1812-3368-2015-2-3-25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068683465"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-05",
"datePublishedReg": "2018-05-01",
"description": "We present results on the existence of oscillating solutions of specific form (\u201cquasiperiodic solutions) for a nonlinear differential equation with power nonlinearity. For oscillating solutions to third-order equations of this type, we obtain an asymptotics of extremums, which is expressed through the asymptotics of extremums of a \u201cquasiperiodic\u201d solution. These results clarify the asymptotic formulas for the modules of extremums of solutions obtained by the author earlier.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10958-018-3762-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136516",
"issn": [
"1072-3374",
"1573-8795"
],
"name": "Journal of Mathematical Sciences",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "230"
}
],
"name": "Asymptotics of Oscillating Solutions to Equations with Power Nonlinearities",
"pagination": "651-655",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"f02ff0e6fefc4b9546f2b59593f553e352e99098c30e653150b67cca7aeb87ca"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10958-018-3762-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101763729"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10958-018-3762-8",
"https://app.dimensions.ai/details/publication/pub.1101763729"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112036_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10958-018-3762-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-3762-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-3762-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-3762-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-018-3762-8'
This table displays all metadata directly associated to this object as RDF triples.
82 TRIPLES
21 PREDICATES
33 URIs
19 LITERALS
7 BLANK NODES