Asymptotics of Spectra of Compact Pseudodifferential Operators with Nonsmooth Symbols with Respect to Spatial Variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-18

AUTHORS

A. I. Karol’

ABSTRACT

We consider compact selfadjoint pseudodifferential operators with symbols that are not smooth with respect to x on a fixed set. We obtain conditions for the validity of the Weyl formula for the spectral asymptotics and apply the results to some class of pseudodifferential operators.

PAGES

355-374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-017-3539-5

DOI

http://dx.doi.org/10.1007/s10958-017-3539-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091829324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Petersburg State University, 28, Universitetskii pr., 198504, St. Petersburg, Petrodvorets, Russia", 
          "id": "http://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University, 28, Universitetskii pr., 198504, St. Petersburg, Petrodvorets, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karol\u2019", 
        "givenName": "A. I.", 
        "id": "sg:person.015000677647.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000677647.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-49938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025664356", 
          "https://doi.org/10.1007/978-3-540-49938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037207738", 
          "https://doi.org/10.1007/bf00051349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4586-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042729566", 
          "https://doi.org/10.1007/978-94-009-4586-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-18", 
    "datePublishedReg": "2017-09-18", 
    "description": "We consider compact selfadjoint pseudodifferential operators with symbols that are not smooth with respect to x on a fixed set. We obtain conditions for the validity of the Weyl formula for the spectral asymptotics and apply the results to some class of pseudodifferential operators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10958-017-3539-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "226"
      }
    ], 
    "keywords": [
      "symbols", 
      "validity", 
      "variables", 
      "respect", 
      "results", 
      "set", 
      "operators", 
      "conditions", 
      "class", 
      "spatial variables", 
      "pseudodifferential operators", 
      "Weyl formula", 
      "spectral asymptotics", 
      "asymptotics", 
      "spectra", 
      "Compact Pseudodifferential Operators", 
      "formula"
    ], 
    "name": "Asymptotics of Spectra of Compact Pseudodifferential Operators with Nonsmooth Symbols with Respect to Spatial Variables", 
    "pagination": "355-374", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091829324"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-017-3539-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-017-3539-5", 
      "https://app.dimensions.ai/details/publication/pub.1091829324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_721.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10958-017-3539-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-017-3539-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-017-3539-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-017-3539-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-017-3539-5'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      44 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-017-3539-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N07cde33aab344563b10a48b7b70bf318
4 schema:citation sg:pub.10.1007/978-3-540-49938-1
5 sg:pub.10.1007/978-94-009-4586-9
6 sg:pub.10.1007/bf00051349
7 schema:datePublished 2017-09-18
8 schema:datePublishedReg 2017-09-18
9 schema:description We consider compact selfadjoint pseudodifferential operators with symbols that are not smooth with respect to x on a fixed set. We obtain conditions for the validity of the Weyl formula for the spectral asymptotics and apply the results to some class of pseudodifferential operators.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N3d17d232b3d04b3eb032150789852b44
13 N7a1148d6c8234df8996482774b741bd7
14 sg:journal.1136516
15 schema:keywords Compact Pseudodifferential Operators
16 Weyl formula
17 asymptotics
18 class
19 conditions
20 formula
21 operators
22 pseudodifferential operators
23 respect
24 results
25 set
26 spatial variables
27 spectra
28 spectral asymptotics
29 symbols
30 validity
31 variables
32 schema:name Asymptotics of Spectra of Compact Pseudodifferential Operators with Nonsmooth Symbols with Respect to Spatial Variables
33 schema:pagination 355-374
34 schema:productId N685cb81daad74940bd6a2e6bca3ecec2
35 Naec43bb49f0f4a35835e2303944c8166
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091829324
37 https://doi.org/10.1007/s10958-017-3539-5
38 schema:sdDatePublished 2022-12-01T06:35
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N59032295fd4243f6ada47b1cee628650
41 schema:url https://doi.org/10.1007/s10958-017-3539-5
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N07cde33aab344563b10a48b7b70bf318 rdf:first sg:person.015000677647.64
46 rdf:rest rdf:nil
47 N3d17d232b3d04b3eb032150789852b44 schema:volumeNumber 226
48 rdf:type schema:PublicationVolume
49 N59032295fd4243f6ada47b1cee628650 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N685cb81daad74940bd6a2e6bca3ecec2 schema:name dimensions_id
52 schema:value pub.1091829324
53 rdf:type schema:PropertyValue
54 N7a1148d6c8234df8996482774b741bd7 schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 Naec43bb49f0f4a35835e2303944c8166 schema:name doi
57 schema:value 10.1007/s10958-017-3539-5
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136516 schema:issn 1072-3374
66 1573-8795
67 schema:name Journal of Mathematical Sciences
68 schema:publisher Springer Nature
69 rdf:type schema:Periodical
70 sg:person.015000677647.64 schema:affiliation grid-institutes:grid.15447.33
71 schema:familyName Karol’
72 schema:givenName A. I.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000677647.64
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-540-49938-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025664356
76 https://doi.org/10.1007/978-3-540-49938-1
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-94-009-4586-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042729566
79 https://doi.org/10.1007/978-94-009-4586-9
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00051349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037207738
82 https://doi.org/10.1007/bf00051349
83 rdf:type schema:CreativeWork
84 grid-institutes:grid.15447.33 schema:alternateName St. Petersburg State University, 28, Universitetskii pr., 198504, St. Petersburg, Petrodvorets, Russia
85 schema:name St. Petersburg State University, 28, Universitetskii pr., 198504, St. Petersburg, Petrodvorets, Russia
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...