Singular Initial-Value and Boundary-Value Problems for Integrodifferential Equations in Dynamical Insurance Models with Investments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

T. A. Belkina, N. B. Konyukhova, S. V. Kurochkin

ABSTRACT

We investigate two insurance mathematical models of the following behavior of an insurance company in the insurance market: the company invests a constant part of the capital in a risk asset (shares) and invests the remaining part in a risk-free asset (a bank account). Changing parameters (characteristics of shares), this strategy is reduced to the case where all the capital is invested in a risk asset. The first model is based on the classical Cramér–Lundberg risk process for the exponential distribution of values of insurance demands (claims). The second one is based on a modification of the classical risk process (the so-called stochastic premium risk process) where both demand values and insurance premium values are assumed to be exponentially distributed. For the infinite-time nonruin probability of an insurance company as a function of its initial capital, singular problems for linear second-order integrodifferential equations arise. These equations are defined on a semiinfinite interval and they have nonintegrable singularities at the origin and at infinity. The first model yields a singular initial-value problem for integrodifferential equations with a Volterra integral operator with constraints. The second one yields more complicated problem for integrodifferential equations with a non-Volterra integral operator with constraints and a nonlocal condition at the origin. We reduce the problems for integrodifferential equations to equivalent singular problems for ordinary differential equations, provide existence and uniqueness theorems for the solutions, describe their properties and long-time behavior, and provide asymptotic representation of solutions in neighborhoods of singular points. We propose efficient algorithms to find numerical solutions and provide the computational results and their economics interpretation. More... »

PAGES

369-394

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-016-3037-1

DOI

http://dx.doi.org/10.1007/s10958-016-3037-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041743992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Economics and Mathematics Institute", 
          "id": "https://www.grid.ac/institutes/grid.465303.7", 
          "name": [
            "Central Economics and Mathematics Institute of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belkina", 
        "givenName": "T. A.", 
        "id": "sg:person.015526377751.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526377751.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Informatics Problems", 
          "id": "https://www.grid.ac/institutes/grid.465279.b", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konyukhova", 
        "givenName": "N. B.", 
        "id": "sg:person.014257535521.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257535521.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Informatics Problems", 
          "id": "https://www.grid.ac/institutes/grid.465279.b", 
          "name": [
            "Federal Research Center \u201cComputer Science and Control\u201d of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurochkin", 
        "givenName": "S. V.", 
        "id": "sg:person.07745005721.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745005721.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965542512100077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000468117", 
          "https://doi.org/10.1134/s0965542512100077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9058-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009744271", 
          "https://doi.org/10.1007/978-1-4613-9058-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9058-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009744271", 
          "https://doi.org/10.1007/978-1-4613-9058-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007800100057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011353566", 
          "https://doi.org/10.1007/s007800100057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(80)90089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021075330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(65)90096-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022833121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7333-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060242", 
          "https://doi.org/10.1007/978-1-4614-7333-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(66)90132-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025607507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03461238.2012.699001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026029570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(63)90156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031724677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0041-5553(83)80104-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032630474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rnam.1986.1.4.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032905876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4149(01)00148-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034365689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(63)90183-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034862542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0040585x9797987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/-13-1-319-351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092021194"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "We investigate two insurance mathematical models of the following behavior of an insurance company in the insurance market: the company invests a constant part of the capital in a risk asset (shares) and invests the remaining part in a risk-free asset (a bank account). Changing parameters (characteristics of shares), this strategy is reduced to the case where all the capital is invested in a risk asset. The first model is based on the classical Cram\u00e9r\u2013Lundberg risk process for the exponential distribution of values of insurance demands (claims). The second one is based on a modification of the classical risk process (the so-called stochastic premium risk process) where both demand values and insurance premium values are assumed to be exponentially distributed. For the infinite-time nonruin probability of an insurance company as a function of its initial capital, singular problems for linear second-order integrodifferential equations arise. These equations are defined on a semiinfinite interval and they have nonintegrable singularities at the origin and at infinity. The first model yields a singular initial-value problem for integrodifferential equations with a Volterra integral operator with constraints. The second one yields more complicated problem for integrodifferential equations with a non-Volterra integral operator with constraints and a nonlocal condition at the origin. We reduce the problems for integrodifferential equations to equivalent singular problems for ordinary differential equations, provide existence and uniqueness theorems for the solutions, describe their properties and long-time behavior, and provide asymptotic representation of solutions in neighborhoods of singular points. We propose efficient algorithms to find numerical solutions and provide the computational results and their economics interpretation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-016-3037-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "218"
      }
    ], 
    "name": "Singular Initial-Value and Boundary-Value Problems for Integrodifferential Equations in Dynamical Insurance Models with Investments", 
    "pagination": "369-394", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6d982c22770343d72cf9b9e9e061815787b03bf0de2d541cbac9c4e550ce070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-016-3037-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041743992"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-016-3037-1", 
      "https://app.dimensions.ai/details/publication/pub.1041743992"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-016-3037-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3037-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3037-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3037-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3037-1'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-016-3037-1 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nfd5d16d9e88e466bbc3c4673a2f73f2d
4 schema:citation sg:pub.10.1007/978-1-4613-9058-9
5 sg:pub.10.1007/978-1-4614-7333-6_3
6 sg:pub.10.1007/s007800100057
7 sg:pub.10.1134/s0965542512100077
8 https://doi.org/10.1016/0041-5553(63)90156-3
9 https://doi.org/10.1016/0041-5553(63)90183-6
10 https://doi.org/10.1016/0041-5553(65)90096-0
11 https://doi.org/10.1016/0041-5553(66)90132-7
12 https://doi.org/10.1016/0041-5553(80)90089-0
13 https://doi.org/10.1016/s0041-5553(83)80104-9
14 https://doi.org/10.1016/s0304-4149(01)00148-x
15 https://doi.org/10.1080/03461238.2012.699001
16 https://doi.org/10.1137/s0040585x9797987
17 https://doi.org/10.1515/rnam.1986.1.4.245
18 https://doi.org/10.4064/-13-1-319-351
19 schema:datePublished 2016-10
20 schema:datePublishedReg 2016-10-01
21 schema:description We investigate two insurance mathematical models of the following behavior of an insurance company in the insurance market: the company invests a constant part of the capital in a risk asset (shares) and invests the remaining part in a risk-free asset (a bank account). Changing parameters (characteristics of shares), this strategy is reduced to the case where all the capital is invested in a risk asset. The first model is based on the classical Cramér–Lundberg risk process for the exponential distribution of values of insurance demands (claims). The second one is based on a modification of the classical risk process (the so-called stochastic premium risk process) where both demand values and insurance premium values are assumed to be exponentially distributed. For the infinite-time nonruin probability of an insurance company as a function of its initial capital, singular problems for linear second-order integrodifferential equations arise. These equations are defined on a semiinfinite interval and they have nonintegrable singularities at the origin and at infinity. The first model yields a singular initial-value problem for integrodifferential equations with a Volterra integral operator with constraints. The second one yields more complicated problem for integrodifferential equations with a non-Volterra integral operator with constraints and a nonlocal condition at the origin. We reduce the problems for integrodifferential equations to equivalent singular problems for ordinary differential equations, provide existence and uniqueness theorems for the solutions, describe their properties and long-time behavior, and provide asymptotic representation of solutions in neighborhoods of singular points. We propose efficient algorithms to find numerical solutions and provide the computational results and their economics interpretation.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N881ed055a3cc445e9e39d661e35cd965
26 Nfb2ee3d482fe4b60910955471485673e
27 sg:journal.1136516
28 schema:name Singular Initial-Value and Boundary-Value Problems for Integrodifferential Equations in Dynamical Insurance Models with Investments
29 schema:pagination 369-394
30 schema:productId N2b8e1fdb8c404fb48cdbfa15950b5ddd
31 N4542fa5a7e6a440380e77ef30f6746d2
32 Ne9adaa5a162a4a33a74c402be4183ee4
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041743992
34 https://doi.org/10.1007/s10958-016-3037-1
35 schema:sdDatePublished 2019-04-11T12:37
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N0680e10755be4a0ea207199ed1ca382c
38 schema:url https://link.springer.com/10.1007%2Fs10958-016-3037-1
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0680e10755be4a0ea207199ed1ca382c schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N2b8e1fdb8c404fb48cdbfa15950b5ddd schema:name dimensions_id
45 schema:value pub.1041743992
46 rdf:type schema:PropertyValue
47 N4542fa5a7e6a440380e77ef30f6746d2 schema:name doi
48 schema:value 10.1007/s10958-016-3037-1
49 rdf:type schema:PropertyValue
50 N881ed055a3cc445e9e39d661e35cd965 schema:volumeNumber 218
51 rdf:type schema:PublicationVolume
52 N8889d7060fde4cff971d729bb57cd988 rdf:first sg:person.014257535521.45
53 rdf:rest Nf68e22572675436d856e6d4465618020
54 Ne9adaa5a162a4a33a74c402be4183ee4 schema:name readcube_id
55 schema:value c6d982c22770343d72cf9b9e9e061815787b03bf0de2d541cbac9c4e550ce070
56 rdf:type schema:PropertyValue
57 Nf68e22572675436d856e6d4465618020 rdf:first sg:person.07745005721.04
58 rdf:rest rdf:nil
59 Nfb2ee3d482fe4b60910955471485673e schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 Nfd5d16d9e88e466bbc3c4673a2f73f2d rdf:first sg:person.015526377751.92
62 rdf:rest N8889d7060fde4cff971d729bb57cd988
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
67 schema:name Applied Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136516 schema:issn 1072-3374
70 1573-8795
71 schema:name Journal of Mathematical Sciences
72 rdf:type schema:Periodical
73 sg:person.014257535521.45 schema:affiliation https://www.grid.ac/institutes/grid.465279.b
74 schema:familyName Konyukhova
75 schema:givenName N. B.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257535521.45
77 rdf:type schema:Person
78 sg:person.015526377751.92 schema:affiliation https://www.grid.ac/institutes/grid.465303.7
79 schema:familyName Belkina
80 schema:givenName T. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526377751.92
82 rdf:type schema:Person
83 sg:person.07745005721.04 schema:affiliation https://www.grid.ac/institutes/grid.465279.b
84 schema:familyName Kurochkin
85 schema:givenName S. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745005721.04
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4613-9058-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009744271
89 https://doi.org/10.1007/978-1-4613-9058-9
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-1-4614-7333-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025060242
92 https://doi.org/10.1007/978-1-4614-7333-6_3
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s007800100057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011353566
95 https://doi.org/10.1007/s007800100057
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/s0965542512100077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000468117
98 https://doi.org/10.1134/s0965542512100077
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0041-5553(63)90156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031724677
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0041-5553(63)90183-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034862542
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0041-5553(65)90096-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022833121
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0041-5553(66)90132-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025607507
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0041-5553(80)90089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021075330
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0041-5553(83)80104-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032630474
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0304-4149(01)00148-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034365689
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/03461238.2012.699001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029570
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1137/s0040585x9797987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878424
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1515/rnam.1986.1.4.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032905876
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4064/-13-1-319-351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092021194
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.465279.b schema:alternateName Institute of Informatics Problems
123 schema:name Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Moscow, Russia
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.465303.7 schema:alternateName Central Economics and Mathematics Institute
126 schema:name Central Economics and Mathematics Institute of Russian Academy of Sciences, Moscow, Russia
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...