On Accuracy of Long-Term Risk Forecasts by Normal Variance-Mean Mixtures Decomposition Algorithm* View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

A.Yu. Korchagin

ABSTRACT

This article provides an accuracy and applicability analysis of the approach to risk forecasting using parametric mixture models. The studied method is based upon results of the modified grid-based two-step decomposition algorithm for variance-mean mixtures. Instead of setting a fixed forecast interval, an approach is introduced to dynamically monitor relevant metrics for forecasts in a wide time frame, producing the basis for decision making regarding the quality and reliability of predictions for certain periods of time. More... »

PAGES

287-297

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-016-3030-8

DOI

http://dx.doi.org/10.1007/s10958-016-3030-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030175308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korchagin", 
        "givenName": "A.Yu.", 
        "id": "sg:person.010170417462.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010170417462.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspa.1977.0041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005860499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/tvp4496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072377086"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "This article provides an accuracy and applicability analysis of the approach to risk forecasting using parametric mixture models. The studied method is based upon results of the modified grid-based two-step decomposition algorithm for variance-mean mixtures. Instead of setting a fixed forecast interval, an approach is introduced to dynamically monitor relevant metrics for forecasts in a wide time frame, producing the basis for decision making regarding the quality and reliability of predictions for certain periods of time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-016-3030-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "218"
      }
    ], 
    "name": "On Accuracy of Long-Term Risk Forecasts by Normal Variance-Mean Mixtures Decomposition Algorithm*", 
    "pagination": "287-297", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fc062bc8341456cb27b6a02a8f5cc3d2ce40ce318cfa69a0eb319fac1233c08"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-016-3030-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030175308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-016-3030-8", 
      "https://app.dimensions.ai/details/publication/pub.1030175308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10958-016-3030-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3030-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3030-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3030-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-3030-8'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-016-3030-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd4549514758845f4bc33e950892c9883
4 schema:citation https://doi.org/10.1098/rspa.1977.0041
5 https://doi.org/10.4213/tvp4496
6 schema:datePublished 2016-10
7 schema:datePublishedReg 2016-10-01
8 schema:description This article provides an accuracy and applicability analysis of the approach to risk forecasting using parametric mixture models. The studied method is based upon results of the modified grid-based two-step decomposition algorithm for variance-mean mixtures. Instead of setting a fixed forecast interval, an approach is introduced to dynamically monitor relevant metrics for forecasts in a wide time frame, producing the basis for decision making regarding the quality and reliability of predictions for certain periods of time.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N98ad8a724905485c9940eeaa3a9ff40a
13 Nfdb947a23bc444b18c0f6e5364f3c81a
14 sg:journal.1136516
15 schema:name On Accuracy of Long-Term Risk Forecasts by Normal Variance-Mean Mixtures Decomposition Algorithm*
16 schema:pagination 287-297
17 schema:productId N94def10d24a34985a482c5205fc174a0
18 Ne9b9238354e248a4bfce31622f9a4c58
19 Nf5dce3ffc4d04bcb8e81aab898937911
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030175308
21 https://doi.org/10.1007/s10958-016-3030-8
22 schema:sdDatePublished 2019-04-11T12:44
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N30246e4019194ddfb3b0cf8798189e69
25 schema:url https://link.springer.com/10.1007%2Fs10958-016-3030-8
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N30246e4019194ddfb3b0cf8798189e69 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N94def10d24a34985a482c5205fc174a0 schema:name doi
32 schema:value 10.1007/s10958-016-3030-8
33 rdf:type schema:PropertyValue
34 N98ad8a724905485c9940eeaa3a9ff40a schema:issueNumber 3
35 rdf:type schema:PublicationIssue
36 Nd4549514758845f4bc33e950892c9883 rdf:first sg:person.010170417462.26
37 rdf:rest rdf:nil
38 Ne9b9238354e248a4bfce31622f9a4c58 schema:name dimensions_id
39 schema:value pub.1030175308
40 rdf:type schema:PropertyValue
41 Nf5dce3ffc4d04bcb8e81aab898937911 schema:name readcube_id
42 schema:value 8fc062bc8341456cb27b6a02a8f5cc3d2ce40ce318cfa69a0eb319fac1233c08
43 rdf:type schema:PropertyValue
44 Nfdb947a23bc444b18c0f6e5364f3c81a schema:volumeNumber 218
45 rdf:type schema:PublicationVolume
46 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
47 schema:name Information and Computing Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
50 schema:name Artificial Intelligence and Image Processing
51 rdf:type schema:DefinedTerm
52 sg:journal.1136516 schema:issn 1072-3374
53 1573-8795
54 schema:name Journal of Mathematical Sciences
55 rdf:type schema:Periodical
56 sg:person.010170417462.26 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
57 schema:familyName Korchagin
58 schema:givenName A.Yu.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010170417462.26
60 rdf:type schema:Person
61 https://doi.org/10.1098/rspa.1977.0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005860499
62 rdf:type schema:CreativeWork
63 https://doi.org/10.4213/tvp4496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072377086
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
66 schema:name Lomonosov Moscow State University, Moscow, Russia
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...