Distribution of Functionals of Special Diffusions with Jumps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

A. N. Borodin

ABSTRACT

The paper deals with special class of diffusions with jumps. For the traditional class of such diffusions, the jumps occur at the moments corresponding to the moments of jumps of a Poisson process. The position at the moment of a jump can be arbitrary. A description of the traditional class of diffusions with jumps is well known. A natural generalization of this class and many other results are also given here. In the present paper, we consider diffusions, for which the position of diffusion in any moment of jump takes a finitely many values. Such moments, for example, are the first exit time from an interval, the moment inverse to the diffusion local time or the minimum of inverse local times. The results of interest are those that allow one to compute the distributions of various functionals of diffusion with jumps. For a diffusion, in particular for the Brownian motion, the results of M. Kac are of key importance for development of the theory of the distributions of integral functionals. More... »

PAGES

443-455

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-016-2788-z

DOI

http://dx.doi.org/10.1007/s10958-016-2788-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045203849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borodin", 
        "givenName": "A. N.", 
        "id": "sg:person.016033230057.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033230057.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1949-0027960-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053494961"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "The paper deals with special class of diffusions with jumps. For the traditional class of such diffusions, the jumps occur at the moments corresponding to the moments of jumps of a Poisson process. The position at the moment of a jump can be arbitrary. A description of the traditional class of diffusions with jumps is well known. A natural generalization of this class and many other results are also given here. In the present paper, we consider diffusions, for which the position of diffusion in any moment of jump takes a finitely many values. Such moments, for example, are the first exit time from an interval, the moment inverse to the diffusion local time or the minimum of inverse local times. The results of interest are those that allow one to compute the distributions of various functionals of diffusion with jumps. For a diffusion, in particular for the Brownian motion, the results of M. Kac are of key importance for development of the theory of the distributions of integral functionals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-016-2788-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "214"
      }
    ], 
    "name": "Distribution of Functionals of Special Diffusions with Jumps", 
    "pagination": "443-455", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d75228d56cabda38d24c1af0e6bb814fdffaf93081bc5e20c57de673c1c95bde"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-016-2788-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045203849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-016-2788-z", 
      "https://app.dimensions.ai/details/publication/pub.1045203849"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-016-2788-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2788-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2788-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2788-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2788-z'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-016-2788-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N24507d66e39b438abf8d27bac43a7b95
4 schema:citation https://doi.org/10.1090/s0002-9947-1949-0027960-x
5 schema:datePublished 2016-04
6 schema:datePublishedReg 2016-04-01
7 schema:description The paper deals with special class of diffusions with jumps. For the traditional class of such diffusions, the jumps occur at the moments corresponding to the moments of jumps of a Poisson process. The position at the moment of a jump can be arbitrary. A description of the traditional class of diffusions with jumps is well known. A natural generalization of this class and many other results are also given here. In the present paper, we consider diffusions, for which the position of diffusion in any moment of jump takes a finitely many values. Such moments, for example, are the first exit time from an interval, the moment inverse to the diffusion local time or the minimum of inverse local times. The results of interest are those that allow one to compute the distributions of various functionals of diffusion with jumps. For a diffusion, in particular for the Brownian motion, the results of M. Kac are of key importance for development of the theory of the distributions of integral functionals.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na234370de9184f35945f7ec0b353641a
12 Nd27b95b0789345d980e68303d1171b77
13 sg:journal.1136516
14 schema:name Distribution of Functionals of Special Diffusions with Jumps
15 schema:pagination 443-455
16 schema:productId N8f29e51f83274c62bad3b63d789c0f24
17 Ncd6ad73be72c4464a8b39a0b756ab542
18 Nff7880c8db5b41628af5f9b9ece74351
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045203849
20 https://doi.org/10.1007/s10958-016-2788-z
21 schema:sdDatePublished 2019-04-10T16:43
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N3e20bfd8e40f4a0fb709850e4dcc7339
24 schema:url http://link.springer.com/10.1007%2Fs10958-016-2788-z
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N24507d66e39b438abf8d27bac43a7b95 rdf:first sg:person.016033230057.72
29 rdf:rest rdf:nil
30 N3e20bfd8e40f4a0fb709850e4dcc7339 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N8f29e51f83274c62bad3b63d789c0f24 schema:name readcube_id
33 schema:value d75228d56cabda38d24c1af0e6bb814fdffaf93081bc5e20c57de673c1c95bde
34 rdf:type schema:PropertyValue
35 Na234370de9184f35945f7ec0b353641a schema:issueNumber 4
36 rdf:type schema:PublicationIssue
37 Nc98d22171c434bd3ac26a88d87045119 schema:name St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University, St.Petersburg, Russia
38 rdf:type schema:Organization
39 Ncd6ad73be72c4464a8b39a0b756ab542 schema:name dimensions_id
40 schema:value pub.1045203849
41 rdf:type schema:PropertyValue
42 Nd27b95b0789345d980e68303d1171b77 schema:volumeNumber 214
43 rdf:type schema:PublicationVolume
44 Nff7880c8db5b41628af5f9b9ece74351 schema:name doi
45 schema:value 10.1007/s10958-016-2788-z
46 rdf:type schema:PropertyValue
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136516 schema:issn 1072-3374
54 1573-8795
55 schema:name Journal of Mathematical Sciences
56 rdf:type schema:Periodical
57 sg:person.016033230057.72 schema:affiliation Nc98d22171c434bd3ac26a88d87045119
58 schema:familyName Borodin
59 schema:givenName A. N.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033230057.72
61 rdf:type schema:Person
62 https://doi.org/10.1090/s0002-9947-1949-0027960-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053494961
63 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...