Matrix Factorization for Solutions of the Yang–Baxter Equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

S. E. Derkachov, D. Chicherin

ABSTRACT

We study solutions of the Yang–Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra sℓ2, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of sℓ2, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles. More... »

PAGES

723-742

References to SciGraph publications

  • 1996-04. Yangian double in LETTERS IN MATHEMATICAL PHYSICS
  • 1995-07. Discrete Heisenberg-Weyl Group and modular group in LETTERS IN MATHEMATICAL PHYSICS
  • 1982. Quantum spectral transform method recent developments in INTEGRABLE QUANTUM FIELD THEORIES
  • 2001-05. Strongly Coupled Quantum Discrete Liouville Theory.¶I: Algebraic Approach and Duality in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-10. Self-dual continuous series of representations for Uqsl2 and Uqosp1|2 in JOURNAL OF HIGH ENERGY PHYSICS
  • 1990-05. Chiral Potts model as a descendant of the six-vertex model in JOURNAL OF STATISTICAL PHYSICS
  • 1981-09. Yang-Baxter equation and representation theory: I in LETTERS IN MATHEMATICAL PHYSICS
  • 2007-06. An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic) in THE RAMANUJAN JOURNAL
  • 2014-04. The universal Racah-Wigner symbol for Uq(osp(1|2)) in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-09. R-Operator, Co-Product and Haar-Measure for the Modular Double of in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1983-11. Local Hamiltonians for integrable quantum models on a lattice in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2005-09. Noncommutative Hypergeometry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-05. Finite-dimensional representations of the elliptic modular double in THEORETICAL AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-016-2734-0

    DOI

    http://dx.doi.org/10.1007/s10958-016-2734-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050146589


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Derkachov", 
            "givenName": "S. E.", 
            "id": "sg:person.010324735423.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire d'Annecy-le-Vieux de Physique Th\u00e9orique", 
              "id": "https://www.grid.ac/institutes/grid.462959.5", 
              "name": [
                "Laboratoire d\u2019Annecy-le-Vieux de Physique Th\u00e9orique LAPTH, CNRS, UMR 5108 associ\u00e9e \u00e0 l\u2019Universit\u00e9 de Savoie, Annecy-le-Vieux, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chicherin", 
            "givenName": "D.", 
            "id": "sg:person.012376404101.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376404101.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00220-005-1342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003420438", 
              "https://doi.org/10.1007/s00220-005-1342-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003420438", 
              "https://doi.org/10.1007/s00220-005-1342-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1342-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003420438", 
              "https://doi.org/10.1007/s00220-005-1342-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-015-0284-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009212151", 
              "https://doi.org/10.1007/s11232-015-0284-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2007.05.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012485570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-11190-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015346073", 
              "https://doi.org/10.1007/3-540-11190-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015556503", 
              "https://doi.org/10.1007/s002200100412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/47/19/192003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022765093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/41/s11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024259909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2007.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025619488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027507099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm2013v068n06abeh004869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027868053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01872779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028671073", 
              "https://doi.org/10.1007/bf01872779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02285311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033113586", 
              "https://doi.org/10.1007/bf02285311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02285311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033113586", 
              "https://doi.org/10.1007/bf02285311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-0894-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036024156", 
              "https://doi.org/10.1007/s00220-003-0894-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036435695", 
              "https://doi.org/10.1007/jhep04(2014)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11139-006-0245-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040476799", 
              "https://doi.org/10.1007/s11139-006-0245-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01025851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040801893", 
              "https://doi.org/10.1007/bf01025851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(72)90335-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045187039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045601638", 
              "https://doi.org/10.1007/jhep10(2014)091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00714404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047029754", 
              "https://doi.org/10.1007/bf00714404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01018648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048069481", 
              "https://doi.org/10.1007/bf01018648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2005.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048460623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/47/11/115203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048703582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.06.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052361558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.531809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058108381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-06-13513-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/rm374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072370022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/rm9197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072370798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/tmf45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072374066"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03", 
        "datePublishedReg": "2016-03-01", 
        "description": "We study solutions of the Yang\u2013Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra s\u21132, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of s\u21132, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-016-2734-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "213"
          }
        ], 
        "name": "Matrix Factorization for Solutions of the Yang\u2013Baxter Equation", 
        "pagination": "723-742", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "eee20e9b412864b662f3f0e9cc99dc3a91cde28e0ce26de551a40bab6f4ad656"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-016-2734-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050146589"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-016-2734-0", 
          "https://app.dimensions.ai/details/publication/pub.1050146589"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-016-2734-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2734-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2734-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2734-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-016-2734-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-016-2734-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N70db638d7cf54d2ab263e6046aa2b39f
    4 schema:citation sg:pub.10.1007/3-540-11190-5_8
    5 sg:pub.10.1007/bf00714404
    6 sg:pub.10.1007/bf01018648
    7 sg:pub.10.1007/bf01025851
    8 sg:pub.10.1007/bf01872779
    9 sg:pub.10.1007/bf02285311
    10 sg:pub.10.1007/jhep04(2014)079
    11 sg:pub.10.1007/jhep10(2014)091
    12 sg:pub.10.1007/s00220-003-0894-5
    13 sg:pub.10.1007/s00220-005-1342-5
    14 sg:pub.10.1007/s002200100412
    15 sg:pub.10.1007/s11139-006-0245-1
    16 sg:pub.10.1007/s11232-015-0284-0
    17 https://doi.org/10.1016/0003-4916(72)90335-1
    18 https://doi.org/10.1016/j.aim.2005.11.007
    19 https://doi.org/10.1016/j.nuclphysb.2007.05.013
    20 https://doi.org/10.1016/j.nuclphysb.2007.05.022
    21 https://doi.org/10.1016/j.nuclphysb.2014.02.019
    22 https://doi.org/10.1016/j.nuclphysb.2014.06.024
    23 https://doi.org/10.1063/1.531809
    24 https://doi.org/10.1070/rm2013v068n06abeh004869
    25 https://doi.org/10.1088/0305-4470/39/41/s11
    26 https://doi.org/10.1088/1751-8113/47/11/115203
    27 https://doi.org/10.1088/1751-8113/47/19/192003
    28 https://doi.org/10.1215/s0012-7094-06-13513-5
    29 https://doi.org/10.4213/rm374
    30 https://doi.org/10.4213/rm9197
    31 https://doi.org/10.4213/tmf45
    32 schema:datePublished 2016-03
    33 schema:datePublishedReg 2016-03-01
    34 schema:description We study solutions of the Yang–Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra sℓ2, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of sℓ2, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf Nb8c81a6fb49c4cc0813fc31981a49785
    39 Ndd7858de2f5c4b528e1bd2325ed8b3eb
    40 sg:journal.1136516
    41 schema:name Matrix Factorization for Solutions of the Yang–Baxter Equation
    42 schema:pagination 723-742
    43 schema:productId N43c2dea4edfe499eb0aca7c0f5204dfa
    44 N97ca55c6ed74455e89d0222fc8e7248b
    45 Nfc393185fc974e8bb9f17aefa2e31600
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050146589
    47 https://doi.org/10.1007/s10958-016-2734-0
    48 schema:sdDatePublished 2019-04-11T01:08
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Nd225726c10dd461d850aae2128262f8d
    51 schema:url http://link.springer.com/10.1007%2Fs10958-016-2734-0
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N3893e15960974c269f26e201ee076b8d rdf:first sg:person.012376404101.26
    56 rdf:rest rdf:nil
    57 N43c2dea4edfe499eb0aca7c0f5204dfa schema:name readcube_id
    58 schema:value eee20e9b412864b662f3f0e9cc99dc3a91cde28e0ce26de551a40bab6f4ad656
    59 rdf:type schema:PropertyValue
    60 N70db638d7cf54d2ab263e6046aa2b39f rdf:first sg:person.010324735423.83
    61 rdf:rest N3893e15960974c269f26e201ee076b8d
    62 N97ca55c6ed74455e89d0222fc8e7248b schema:name dimensions_id
    63 schema:value pub.1050146589
    64 rdf:type schema:PropertyValue
    65 Nb8c81a6fb49c4cc0813fc31981a49785 schema:issueNumber 5
    66 rdf:type schema:PublicationIssue
    67 Nd225726c10dd461d850aae2128262f8d schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Ndd7858de2f5c4b528e1bd2325ed8b3eb schema:volumeNumber 213
    70 rdf:type schema:PublicationVolume
    71 Nfc393185fc974e8bb9f17aefa2e31600 schema:name doi
    72 schema:value 10.1007/s10958-016-2734-0
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1136516 schema:issn 1072-3374
    81 1573-8795
    82 schema:name Journal of Mathematical Sciences
    83 rdf:type schema:Periodical
    84 sg:person.010324735423.83 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    85 schema:familyName Derkachov
    86 schema:givenName S. E.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83
    88 rdf:type schema:Person
    89 sg:person.012376404101.26 schema:affiliation https://www.grid.ac/institutes/grid.462959.5
    90 schema:familyName Chicherin
    91 schema:givenName D.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012376404101.26
    93 rdf:type schema:Person
    94 sg:pub.10.1007/3-540-11190-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015346073
    95 https://doi.org/10.1007/3-540-11190-5_8
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf00714404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047029754
    98 https://doi.org/10.1007/bf00714404
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01018648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048069481
    101 https://doi.org/10.1007/bf01018648
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf01025851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040801893
    104 https://doi.org/10.1007/bf01025851
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf01872779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028671073
    107 https://doi.org/10.1007/bf01872779
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf02285311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033113586
    110 https://doi.org/10.1007/bf02285311
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/jhep04(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036435695
    113 https://doi.org/10.1007/jhep04(2014)079
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/jhep10(2014)091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045601638
    116 https://doi.org/10.1007/jhep10(2014)091
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00220-003-0894-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036024156
    119 https://doi.org/10.1007/s00220-003-0894-5
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00220-005-1342-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003420438
    122 https://doi.org/10.1007/s00220-005-1342-5
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s002200100412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015556503
    125 https://doi.org/10.1007/s002200100412
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11139-006-0245-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040476799
    128 https://doi.org/10.1007/s11139-006-0245-1
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s11232-015-0284-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009212151
    131 https://doi.org/10.1007/s11232-015-0284-0
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0003-4916(72)90335-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045187039
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.aim.2005.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048460623
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.nuclphysb.2007.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025619488
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.nuclphysb.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012485570
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.nuclphysb.2014.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027507099
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.nuclphysb.2014.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052361558
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.531809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058108381
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1070/rm2013v068n06abeh004869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027868053
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/0305-4470/39/41/s11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024259909
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/1751-8113/47/11/115203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048703582
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1088/1751-8113/47/19/192003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022765093
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1215/s0012-7094-06-13513-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415632
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.4213/rm374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370022
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.4213/rm9197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370798
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.4213/tmf45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072374066
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    164 schema:name St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.462959.5 schema:alternateName Laboratoire d'Annecy-le-Vieux de Physique Théorique
    167 schema:name Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH, CNRS, UMR 5108 associée à l’Université de Savoie, Annecy-le-Vieux, France
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...