Positive Solutions with Nonpower Asymptotic Behavior and Quasiperiodic Solutions to an Emden–Fowler Type Higher Order Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

I. V. Astashova

ABSTRACT

We consider the differential equation y(n) = p0|y|k sgn y, where p0> 0 and 12 ≤ n ≤ 14, and prove that there exists k > 1 such that the equation has positive solutions with nonpower asymptotics y(x) = (x∗-x)-αh(ln (x∗-x)), x < x∗, where h is a nonconstant continuous positive periodic function. For n ≥ 2 we prove that such a solution exists, but with an oscillating periodic function h. Bibliography: 8 titles. Illustrations: 1 figure. More... »

PAGES

8-23

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-015-2419-0

DOI

http://dx.doi.org/10.1007/s10958-015-2419-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050965176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashova", 
        "givenName": "I. V.", 
        "id": "sg:person.012450371632.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02412217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785649", 
          "https://doi.org/10.1007/bf02412217"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "We consider the differential equation y(n) = p0|y|k sgn y, where p0> 0 and 12 \u2264 n \u2264 14, and prove that there exists k > 1 such that the equation has positive solutions with nonpower asymptotics y(x) = (x\u2217-x)-\u03b1h(ln (x\u2217-x)), x < x\u2217, where h is a nonconstant continuous positive periodic function. For n \u2265 2 we prove that such a solution exists, but with an oscillating periodic function h. Bibliography: 8 titles. Illustrations: 1 figure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-015-2419-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "208"
      }
    ], 
    "name": "Positive Solutions with Nonpower Asymptotic Behavior and Quasiperiodic Solutions to an Emden\u2013Fowler Type Higher Order Equations", 
    "pagination": "8-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2c7d33e825bd98403e094d62fdd6c98cf099009c65424e769fdd60750259aee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-015-2419-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050965176"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-015-2419-0", 
      "https://app.dimensions.ai/details/publication/pub.1050965176"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-015-2419-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-015-2419-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-015-2419-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-015-2419-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-015-2419-0'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-015-2419-0 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N46d7c85228244383abeba69befc9f651
4 schema:citation sg:pub.10.1007/bf02412217
5 schema:datePublished 2015-06
6 schema:datePublishedReg 2015-06-01
7 schema:description We consider the differential equation y(n) = p0|y|k sgn y, where p0> 0 and 12 ≤ n ≤ 14, and prove that there exists k > 1 such that the equation has positive solutions with nonpower asymptotics y(x) = (x∗-x)-αh(ln (x∗-x)), x < x∗, where h is a nonconstant continuous positive periodic function. For n ≥ 2 we prove that such a solution exists, but with an oscillating periodic function h. Bibliography: 8 titles. Illustrations: 1 figure.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N90b65c620aec407ba0fc5d3e48efdf63
12 Nf4a3dc815a11494b908f08166ad9b305
13 sg:journal.1136516
14 schema:name Positive Solutions with Nonpower Asymptotic Behavior and Quasiperiodic Solutions to an Emden–Fowler Type Higher Order Equations
15 schema:pagination 8-23
16 schema:productId Naf48c651413c49f79360f155fe7da5dd
17 Nbd26f9d34b8140caace89777bff3bc9a
18 Ne837634b38094cfc85abbd444e0fca38
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965176
20 https://doi.org/10.1007/s10958-015-2419-0
21 schema:sdDatePublished 2019-04-10T16:43
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N869896ebc3f34bef8dc64a3bdba6bde6
24 schema:url http://link.springer.com/10.1007%2Fs10958-015-2419-0
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N46d7c85228244383abeba69befc9f651 rdf:first sg:person.012450371632.48
29 rdf:rest rdf:nil
30 N869896ebc3f34bef8dc64a3bdba6bde6 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N90b65c620aec407ba0fc5d3e48efdf63 schema:issueNumber 1
33 rdf:type schema:PublicationIssue
34 Naf48c651413c49f79360f155fe7da5dd schema:name readcube_id
35 schema:value f2c7d33e825bd98403e094d62fdd6c98cf099009c65424e769fdd60750259aee
36 rdf:type schema:PropertyValue
37 Nbd26f9d34b8140caace89777bff3bc9a schema:name doi
38 schema:value 10.1007/s10958-015-2419-0
39 rdf:type schema:PropertyValue
40 Ne837634b38094cfc85abbd444e0fca38 schema:name dimensions_id
41 schema:value pub.1050965176
42 rdf:type schema:PropertyValue
43 Nf4a3dc815a11494b908f08166ad9b305 schema:volumeNumber 208
44 rdf:type schema:PublicationVolume
45 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
46 schema:name Psychology and Cognitive Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
49 schema:name Psychology
50 rdf:type schema:DefinedTerm
51 sg:journal.1136516 schema:issn 1072-3374
52 1573-8795
53 schema:name Journal of Mathematical Sciences
54 rdf:type schema:Periodical
55 sg:person.012450371632.48 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
56 schema:familyName Astashova
57 schema:givenName I. V.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48
59 rdf:type schema:Person
60 sg:pub.10.1007/bf02412217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785649
61 https://doi.org/10.1007/bf02412217
62 rdf:type schema:CreativeWork
63 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
64 schema:name Lomonosov Moscow State University, 119991, Moscow, Russia
65 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...