Uniform Estimates of Solutions of a Nonlinear Third-Order Differential Equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

I. V. Astashova

ABSTRACT

One considers the differential equation where k > 1, the function p(x, y0, y1, y2) is continuous and satisfies the inequalities as well as the Lipschitz condition with respect to the last three arguments. Uniform estimates are obtained for the moduli of the solutions with a common domain.

PAGES

237-247

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-014-1713-6

DOI

http://dx.doi.org/10.1007/s10958-014-1713-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022805503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University of Economics Statistics and Informatics", 
          "id": "https://www.grid.ac/institutes/grid.446112.4", 
          "name": [
            "Moscow State University of Economics, Statistics, and Informatics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashova", 
        "givenName": "I. V.", 
        "id": "sg:person.012450371632.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4213/im2644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072364326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/im328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072364454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812794253_0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096040831"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "One considers the differential equation where k > 1, the function p(x, y0, y1, y2) is continuous and satisfies the inequalities as well as the Lipschitz condition with respect to the last three arguments. Uniform estimates are obtained for the moduli of the solutions with a common domain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-014-1713-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "197"
      }
    ], 
    "name": "Uniform Estimates of Solutions of a Nonlinear Third-Order Differential Equation", 
    "pagination": "237-247", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ca68208f6e1646728a06791c517209cea669feef9190e51bd76de90a94c7c45"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-014-1713-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022805503"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-014-1713-6", 
      "https://app.dimensions.ai/details/publication/pub.1022805503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-014-1713-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1713-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1713-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1713-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1713-6'


 

This table displays all metadata directly associated to this object as RDF triples.

62 TRIPLES      20 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-014-1713-6 schema:author N2769ddbbe442479fa7155c02fcb25690
2 schema:citation https://doi.org/10.1142/9789812794253_0111
3 https://doi.org/10.4213/im2644
4 https://doi.org/10.4213/im328
5 schema:datePublished 2014-02
6 schema:datePublishedReg 2014-02-01
7 schema:description One considers the differential equation where k > 1, the function p(x, y0, y1, y2) is continuous and satisfies the inequalities as well as the Lipschitz condition with respect to the last three arguments. Uniform estimates are obtained for the moduli of the solutions with a common domain.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N272be29d5f1643a0b89db5dd50588888
12 Ncbdbd04ee5e1497ab4f9a0fd3204d8ac
13 sg:journal.1136516
14 schema:name Uniform Estimates of Solutions of a Nonlinear Third-Order Differential Equation
15 schema:pagination 237-247
16 schema:productId N030fda50cfe94bcda39435c11900a1ee
17 Naa469a97c70b4958af60bea1412a4058
18 Nee3ce614b53c4c3d8a4b879647475053
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022805503
20 https://doi.org/10.1007/s10958-014-1713-6
21 schema:sdDatePublished 2019-04-10T17:31
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ne6745d8601c74c488d7a06209734123b
24 schema:url http://link.springer.com/10.1007%2Fs10958-014-1713-6
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N030fda50cfe94bcda39435c11900a1ee schema:name dimensions_id
29 schema:value pub.1022805503
30 rdf:type schema:PropertyValue
31 N272be29d5f1643a0b89db5dd50588888 schema:volumeNumber 197
32 rdf:type schema:PublicationVolume
33 N2769ddbbe442479fa7155c02fcb25690 rdf:first sg:person.012450371632.48
34 rdf:rest rdf:nil
35 Naa469a97c70b4958af60bea1412a4058 schema:name doi
36 schema:value 10.1007/s10958-014-1713-6
37 rdf:type schema:PropertyValue
38 Ncbdbd04ee5e1497ab4f9a0fd3204d8ac schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 Ne6745d8601c74c488d7a06209734123b schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nee3ce614b53c4c3d8a4b879647475053 schema:name readcube_id
43 schema:value 6ca68208f6e1646728a06791c517209cea669feef9190e51bd76de90a94c7c45
44 rdf:type schema:PropertyValue
45 sg:journal.1136516 schema:issn 1072-3374
46 1573-8795
47 schema:name Journal of Mathematical Sciences
48 rdf:type schema:Periodical
49 sg:person.012450371632.48 schema:affiliation https://www.grid.ac/institutes/grid.446112.4
50 schema:familyName Astashova
51 schema:givenName I. V.
52 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48
53 rdf:type schema:Person
54 https://doi.org/10.1142/9789812794253_0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096040831
55 rdf:type schema:CreativeWork
56 https://doi.org/10.4213/im2644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072364326
57 rdf:type schema:CreativeWork
58 https://doi.org/10.4213/im328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072364454
59 rdf:type schema:CreativeWork
60 https://www.grid.ac/institutes/grid.446112.4 schema:alternateName Moscow State University of Economics Statistics and Informatics
61 schema:name Moscow State University of Economics, Statistics, and Informatics, Moscow, Russia
62 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...