On the Nature of Bifurcations of One-Front Solutions of the Truncated Euler System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01

AUTHORS

E. V. Radkevich

ABSTRACT

We consider the truncated Euler system and analyze bifurcations of a one-front solution to a solution with two fronts. In particular, it is shown that bifurcations of double-humped (single-humped) kink type are caused by perturbations of the upper (lower) critical solution. Bibliography: 2 titles.

PAGES

388-404

References to SciGraph publications

  • 2014-01. Nonclassical Regularization of the Multicomponent Euler System in JOURNAL OF MATHEMATICAL SCIENCES
  • Journal

    TITLE

    Journal of Mathematical Sciences

    ISSUE

    3

    VOLUME

    196

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-014-1664-y

    DOI

    http://dx.doi.org/10.1007/s10958-014-1664-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050610265


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radkevich", 
            "givenName": "E. V.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.4236/am.2010.13021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007692512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10958-014-1661-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038858811", 
              "https://doi.org/10.1007/s10958-014-1661-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01", 
        "datePublishedReg": "2014-01-01", 
        "description": "We consider the truncated Euler system and analyze bifurcations of a one-front solution to a solution with two fronts. In particular, it is shown that bifurcations of double-humped (single-humped) kink type are caused by perturbations of the upper (lower) critical solution. Bibliography: 2 titles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-014-1664-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "196"
          }
        ], 
        "name": "On the Nature of Bifurcations of One-Front Solutions of the Truncated Euler System", 
        "pagination": "388-404", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f1170617b66c887aca9001192f0b5b4aca0002d1d0382dc07c891bff056b88f7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-014-1664-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050610265"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-014-1664-y", 
          "https://app.dimensions.ai/details/publication/pub.1050610265"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-014-1664-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1664-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1664-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1664-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-014-1664-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    59 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-014-1664-y schema:author N7f29673f63ef4b73bcba3113c0eb166d
    2 schema:citation sg:pub.10.1007/s10958-014-1661-1
    3 https://doi.org/10.4236/am.2010.13021
    4 schema:datePublished 2014-01
    5 schema:datePublishedReg 2014-01-01
    6 schema:description We consider the truncated Euler system and analyze bifurcations of a one-front solution to a solution with two fronts. In particular, it is shown that bifurcations of double-humped (single-humped) kink type are caused by perturbations of the upper (lower) critical solution. Bibliography: 2 titles.
    7 schema:genre research_article
    8 schema:inLanguage en
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N21b5802ec95a411b997600cdc6937cac
    11 N5545e97c55ff4fa39bbc25813af0ae37
    12 sg:journal.1136516
    13 schema:name On the Nature of Bifurcations of One-Front Solutions of the Truncated Euler System
    14 schema:pagination 388-404
    15 schema:productId N1d8d030fbe174797ba46e6c82f54f1e5
    16 N5e5ecbc433334136a72a6be818565747
    17 N6d08ae962197414399b0017a36beffbe
    18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610265
    19 https://doi.org/10.1007/s10958-014-1664-y
    20 schema:sdDatePublished 2019-04-11T02:03
    21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    22 schema:sdPublisher N25509faf80254726a128c72a6d1e4bd0
    23 schema:url http://link.springer.com/10.1007%2Fs10958-014-1664-y
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset articles
    26 rdf:type schema:ScholarlyArticle
    27 N1d8d030fbe174797ba46e6c82f54f1e5 schema:name doi
    28 schema:value 10.1007/s10958-014-1664-y
    29 rdf:type schema:PropertyValue
    30 N21b5802ec95a411b997600cdc6937cac schema:volumeNumber 196
    31 rdf:type schema:PublicationVolume
    32 N25509faf80254726a128c72a6d1e4bd0 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N5545e97c55ff4fa39bbc25813af0ae37 schema:issueNumber 3
    35 rdf:type schema:PublicationIssue
    36 N5e5ecbc433334136a72a6be818565747 schema:name readcube_id
    37 schema:value f1170617b66c887aca9001192f0b5b4aca0002d1d0382dc07c891bff056b88f7
    38 rdf:type schema:PropertyValue
    39 N6d08ae962197414399b0017a36beffbe schema:name dimensions_id
    40 schema:value pub.1050610265
    41 rdf:type schema:PropertyValue
    42 N7f29673f63ef4b73bcba3113c0eb166d rdf:first Nb5795d62b0764e66b448402fdb2d06b0
    43 rdf:rest rdf:nil
    44 Nb5795d62b0764e66b448402fdb2d06b0 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    45 schema:familyName Radkevich
    46 schema:givenName E. V.
    47 rdf:type schema:Person
    48 sg:journal.1136516 schema:issn 1072-3374
    49 1573-8795
    50 schema:name Journal of Mathematical Sciences
    51 rdf:type schema:Periodical
    52 sg:pub.10.1007/s10958-014-1661-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038858811
    53 https://doi.org/10.1007/s10958-014-1661-1
    54 rdf:type schema:CreativeWork
    55 https://doi.org/10.4236/am.2010.13021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007692512
    56 rdf:type schema:CreativeWork
    57 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    58 schema:name Moscow State University, 119991, Moscow, Russia
    59 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...