On Nonexistence of Dissipative Estimates for Discrete Kinetic Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

E. V. Radkevich

ABSTRACT

Our study concerns the existence of a global solution to the discrete kinetic equations in Sobolev spaces. We obtain a decomposition of the solution and clarify the influence of the oscillations generated by the interaction operator. We show that there exists a submanifold of initial data for which dissipative solution exit. If initial data u0, v0, w0 deviate from the submanifold , then the interaction operator generates solitons, the nondissipative part of the solution. The amplitude of solitons is proportional to the distance from u0, v0, w0 to the submanifold , which means that the solution can stabilize as t→∞ only on compact sets of spatial variables. Bibliography: 6 titles. More... »

PAGES

659-698

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-013-1213-0

DOI

http://dx.doi.org/10.1007/s10958-013-1213-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043088155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radkevich", 
        "givenName": "E. V.", 
        "id": "sg:person.010212007350.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10958-012-0879-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015584015", 
          "https://doi.org/10.1007/s10958-012-0879-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112064000817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053867472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112064000817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053867472"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Our study concerns the existence of a global solution to the discrete kinetic equations in Sobolev spaces. We obtain a decomposition of the solution and clarify the influence of the oscillations generated by the interaction operator. We show that there exists a submanifold of initial data for which dissipative solution exit. If initial data u0, v0, w0 deviate from the submanifold , then the interaction operator generates solitons, the nondissipative part of the solution. The amplitude of solitons is proportional to the distance from u0, v0, w0 to the submanifold , which means that the solution can stabilize as t\u2192\u221e only on compact sets of spatial variables. Bibliography: 6 titles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-013-1213-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "189"
      }
    ], 
    "name": "On Nonexistence of Dissipative Estimates for Discrete Kinetic Equations", 
    "pagination": "659-698", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd3e6d0a63d200d66e53d6be98be0979154cd5df4608616d5959c163b762d24c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-013-1213-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043088155"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-013-1213-0", 
      "https://app.dimensions.ai/details/publication/pub.1043088155"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-013-1213-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-013-1213-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-013-1213-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-013-1213-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-013-1213-0'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-013-1213-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9cc2119a8a344ae593d951f73026c45c
4 schema:citation sg:pub.10.1007/s10958-012-0879-z
5 https://doi.org/10.1017/s0022112064000817
6 schema:datePublished 2013-03
7 schema:datePublishedReg 2013-03-01
8 schema:description Our study concerns the existence of a global solution to the discrete kinetic equations in Sobolev spaces. We obtain a decomposition of the solution and clarify the influence of the oscillations generated by the interaction operator. We show that there exists a submanifold of initial data for which dissipative solution exit. If initial data u0, v0, w0 deviate from the submanifold , then the interaction operator generates solitons, the nondissipative part of the solution. The amplitude of solitons is proportional to the distance from u0, v0, w0 to the submanifold , which means that the solution can stabilize as t→∞ only on compact sets of spatial variables. Bibliography: 6 titles.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N2b5e38fb6de5422dabcae3f45b3032a4
13 Ne280d70de4c24c3e994c89775ba61f06
14 sg:journal.1136516
15 schema:name On Nonexistence of Dissipative Estimates for Discrete Kinetic Equations
16 schema:pagination 659-698
17 schema:productId N868af3ba14964db896c2c8c9f67409b1
18 Na751730f8c024cbaa65a3a35aba6c304
19 Nfe0b3e858753431b9ccfcf27d1131252
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043088155
21 https://doi.org/10.1007/s10958-013-1213-0
22 schema:sdDatePublished 2019-04-10T19:09
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Ne8e539636740430caf529cf4442ee8b5
25 schema:url http://link.springer.com/10.1007%2Fs10958-013-1213-0
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N2b5e38fb6de5422dabcae3f45b3032a4 schema:volumeNumber 189
30 rdf:type schema:PublicationVolume
31 N868af3ba14964db896c2c8c9f67409b1 schema:name doi
32 schema:value 10.1007/s10958-013-1213-0
33 rdf:type schema:PropertyValue
34 N9cc2119a8a344ae593d951f73026c45c rdf:first sg:person.010212007350.31
35 rdf:rest rdf:nil
36 Na751730f8c024cbaa65a3a35aba6c304 schema:name dimensions_id
37 schema:value pub.1043088155
38 rdf:type schema:PropertyValue
39 Ne280d70de4c24c3e994c89775ba61f06 schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 Ne8e539636740430caf529cf4442ee8b5 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nfe0b3e858753431b9ccfcf27d1131252 schema:name readcube_id
44 schema:value cd3e6d0a63d200d66e53d6be98be0979154cd5df4608616d5959c163b762d24c
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136516 schema:issn 1072-3374
53 1573-8795
54 schema:name Journal of Mathematical Sciences
55 rdf:type schema:Periodical
56 sg:person.010212007350.31 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
57 schema:familyName Radkevich
58 schema:givenName E. V.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
60 rdf:type schema:Person
61 sg:pub.10.1007/s10958-012-0879-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015584015
62 https://doi.org/10.1007/s10958-012-0879-z
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1017/s0022112064000817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053867472
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
67 schema:name Moscow State University, 119991, Moscow, Russia
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...