When are all group codes of a noncommutative group Abelian (a computational approach)? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

C. García Pillado, S. González, V. T. Markov, C. Martínez, A. A. Nechaev

ABSTRACT

Let G be a finite group and F be a field. Any linear code over F that is permutation equivalent to some code defined by an ideal of the group ring FG will be called a G-code. The theory of these “abstract” group codes was developed in 2009. A code is called Abelian if it is an A-code for some Abelian group A. Some conditions were given that all G-codes for some group G are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all G-codes over any field are Abelian if |G| < 128 and |G| ∉ {24, 48, 54, 60, 64, 72, 96, 108, 120}, but for F = and G = S4 there exist non-Abelian G-codes over F. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open. More... »

PAGES

578-585

References to SciGraph publications

  • 2009-06. An intrinsical description of group codes in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-012-1006-x

    DOI

    http://dx.doi.org/10.1007/s10958-012-1006-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023394388


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "University of Oviedo, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pillado", 
            "givenName": "C. Garc\u00eda", 
            "id": "sg:person.015266075521.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266075521.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "University of Oviedo, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonz\u00e1lez", 
            "givenName": "S.", 
            "id": "sg:person.016661036521.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Markov", 
            "givenName": "V. T.", 
            "id": "sg:person.013530345023.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530345023.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "University of Oviedo, Oviedo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ednez", 
            "givenName": "C.", 
            "id": "sg:person.015261576461.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nechaev", 
            "givenName": "A. A.", 
            "id": "sg:person.016564362223.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564362223.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/156939204872347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017844051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-008-9261-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049896548", 
              "https://doi.org/10.1007/s10623-008-9261-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10", 
        "datePublishedReg": "2012-10-01", 
        "description": "Let G be a finite group and F be a field. Any linear code over F that is permutation equivalent to some code defined by an ideal of the group ring FG will be called a G-code. The theory of these \u201cabstract\u201d group codes was developed in 2009. A code is called Abelian if it is an A-code for some Abelian group A. Some conditions were given that all G-codes for some group G are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all G-codes over any field are Abelian if |G| < 128 and |G| \u2209 {24, 48, 54, 60, 64, 72, 96, 108, 120}, but for F = and G = S4 there exist non-Abelian G-codes over F. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-012-1006-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "186"
          }
        ], 
        "name": "When are all group codes of a noncommutative group Abelian (a computational approach)?", 
        "pagination": "578-585", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6f753347a0107db78f611a1c634ca37b44bc0006722a48726690dfcfe2e9fba5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-012-1006-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023394388"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-012-1006-x", 
          "https://app.dimensions.ai/details/publication/pub.1023394388"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-012-1006-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-012-1006-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-012-1006-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-012-1006-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-012-1006-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-012-1006-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8eb1f5e600fd4d589215888d0b102055
    4 schema:citation sg:pub.10.1007/s10623-008-9261-z
    5 https://doi.org/10.1515/156939204872347
    6 schema:datePublished 2012-10
    7 schema:datePublishedReg 2012-10-01
    8 schema:description Let G be a finite group and F be a field. Any linear code over F that is permutation equivalent to some code defined by an ideal of the group ring FG will be called a G-code. The theory of these “abstract” group codes was developed in 2009. A code is called Abelian if it is an A-code for some Abelian group A. Some conditions were given that all G-codes for some group G are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all G-codes over any field are Abelian if |G| < 128 and |G| ∉ {24, 48, 54, 60, 64, 72, 96, 108, 120}, but for F = and G = S4 there exist non-Abelian G-codes over F. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N647bbe685aca4412a5f008ef409ec29f
    13 N9921870be2a74adda1874eb984bb1f94
    14 sg:journal.1136516
    15 schema:name When are all group codes of a noncommutative group Abelian (a computational approach)?
    16 schema:pagination 578-585
    17 schema:productId N19e68b67d69743a898ae64a1dbe26a54
    18 N3bb476a68e4a4deca48aa72cd4f95d28
    19 Nc4fe65d717e4450bbbce9d002b447717
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023394388
    21 https://doi.org/10.1007/s10958-012-1006-x
    22 schema:sdDatePublished 2019-04-11T01:07
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N00ffb0cf206847b3802b1a4df2b6851a
    25 schema:url http://link.springer.com/10.1007%2Fs10958-012-1006-x
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N00ffb0cf206847b3802b1a4df2b6851a schema:name Springer Nature - SN SciGraph project
    30 rdf:type schema:Organization
    31 N19e68b67d69743a898ae64a1dbe26a54 schema:name doi
    32 schema:value 10.1007/s10958-012-1006-x
    33 rdf:type schema:PropertyValue
    34 N3bb476a68e4a4deca48aa72cd4f95d28 schema:name dimensions_id
    35 schema:value pub.1023394388
    36 rdf:type schema:PropertyValue
    37 N55838686ff634f79997517a6004a2670 rdf:first sg:person.015261576461.61
    38 rdf:rest Nc4782d8bc6d14760930eded652cbad46
    39 N647bbe685aca4412a5f008ef409ec29f schema:issueNumber 4
    40 rdf:type schema:PublicationIssue
    41 N76838eb062964a289ab95ead19e7e401 rdf:first sg:person.016661036521.95
    42 rdf:rest Nbfabe05856574991933c42e3b1f3c061
    43 N8eb1f5e600fd4d589215888d0b102055 rdf:first sg:person.015266075521.07
    44 rdf:rest N76838eb062964a289ab95ead19e7e401
    45 N9921870be2a74adda1874eb984bb1f94 schema:volumeNumber 186
    46 rdf:type schema:PublicationVolume
    47 Nbfabe05856574991933c42e3b1f3c061 rdf:first sg:person.013530345023.45
    48 rdf:rest N55838686ff634f79997517a6004a2670
    49 Nc4782d8bc6d14760930eded652cbad46 rdf:first sg:person.016564362223.63
    50 rdf:rest rdf:nil
    51 Nc4fe65d717e4450bbbce9d002b447717 schema:name readcube_id
    52 schema:value 6f753347a0107db78f611a1c634ca37b44bc0006722a48726690dfcfe2e9fba5
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136516 schema:issn 1072-3374
    61 1573-8795
    62 schema:name Journal of Mathematical Sciences
    63 rdf:type schema:Periodical
    64 sg:person.013530345023.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    65 schema:familyName Markov
    66 schema:givenName V. T.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530345023.45
    68 rdf:type schema:Person
    69 sg:person.015261576461.61 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    70 schema:familyName Martínez
    71 schema:givenName C.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61
    73 rdf:type schema:Person
    74 sg:person.015266075521.07 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    75 schema:familyName Pillado
    76 schema:givenName C. García
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266075521.07
    78 rdf:type schema:Person
    79 sg:person.016564362223.63 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    80 schema:familyName Nechaev
    81 schema:givenName A. A.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564362223.63
    83 rdf:type schema:Person
    84 sg:person.016661036521.95 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    85 schema:familyName González
    86 schema:givenName S.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95
    88 rdf:type schema:Person
    89 sg:pub.10.1007/s10623-008-9261-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049896548
    90 https://doi.org/10.1007/s10623-008-9261-z
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1515/156939204872347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017844051
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
    95 schema:name University of Oviedo, Oviedo, Spain
    96 rdf:type schema:Organization
    97 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    98 schema:name Moscow State University, Moscow, Russia
    99 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...