Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10

AUTHORS

S. S. Akbarov

ABSTRACT

We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category). More... »

PAGES

459

References to SciGraph publications

  • 1981. Locally Convex Spaces in NONE
  • 1974-01. p-adic L-series of supersingular elliptic curves in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2003-01. Pontryagin Duality in the Theory of Topological Vector Spaces and in Topological Algebra in JOURNAL OF MATHEMATICAL SCIENCES
  • 1992. Kac Algebras and Duality of Locally Compact Groups in NONE
  • 1963-12. The finite topology of a linear space in ARCHIV DER MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-009-9646-1

    DOI

    http://dx.doi.org/10.1007/s10958-009-9646-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024560685


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "All Russian Institute for Scientific and Technical Information", 
              "id": "https://www.grid.ac/institutes/grid.463015.5", 
              "name": [
                "All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences (VINITI RAN), Usievich Street, 20, 125190, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akbarov", 
            "givenName": "S. S.", 
            "id": "sg:person.014773305541.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014773305541.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1003205195", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02813-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003205195", 
              "https://doi.org/10.1007/978-3-662-02813-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02813-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003205195", 
              "https://doi.org/10.1007/978-3-662-02813-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-90559-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005178610", 
              "https://doi.org/10.1007/978-3-322-90559-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-90559-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005178610", 
              "https://doi.org/10.1007/978-3-322-90559-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1967-11677-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013720349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0012-9593(00)01055-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020273988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01234921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022576496", 
              "https://doi.org/10.1007/bf01234921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02028316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022667835", 
              "https://doi.org/10.1007/bf02028316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0077-1554-08-00169-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028158627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/25.3.209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035842653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1998.1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039594743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020929201133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050463327", 
              "https://doi.org/10.1023/a:1020929201133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1994-1220906-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050865620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129167x01000836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062901946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-73-04078-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064418615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1968438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069673868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2154659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069793525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110808148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096920713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/gsm/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098710018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511810817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098732013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/bc67-0-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099285566"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10", 
        "datePublishedReg": "2009-10-01", 
        "description": "We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-009-9646-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "162"
          }
        ], 
        "name": "Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity", 
        "pagination": "459", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7501e3d33e902d12c821b0265e4b61695a97037b529af5c230cdeea459483efc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-009-9646-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024560685"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-009-9646-1", 
          "https://app.dimensions.ai/details/publication/pub.1024560685"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-009-9646-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-009-9646-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-009-9646-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-009-9646-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-009-9646-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-009-9646-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N58b866cee7a24cf890b42dc35bfbb2a8
    4 schema:citation sg:pub.10.1007/978-3-322-90559-8
    5 sg:pub.10.1007/978-3-662-02813-1
    6 sg:pub.10.1007/bf01234921
    7 sg:pub.10.1007/bf02028316
    8 sg:pub.10.1023/a:1020929201133
    9 https://app.dimensions.ai/details/publication/pub.1003205195
    10 https://doi.org/10.1006/aima.1998.1775
    11 https://doi.org/10.1016/s0012-9593(00)01055-7
    12 https://doi.org/10.1017/cbo9780511810817
    13 https://doi.org/10.1090/gsm/046
    14 https://doi.org/10.1090/s0002-9904-1967-11677-x
    15 https://doi.org/10.1090/s0002-9947-1994-1220906-5
    16 https://doi.org/10.1090/s0077-1554-08-00169-6
    17 https://doi.org/10.1112/blms/25.3.209
    18 https://doi.org/10.1142/s0129167x01000836
    19 https://doi.org/10.1215/s0012-7094-73-04078-7
    20 https://doi.org/10.1515/9783110808148
    21 https://doi.org/10.2307/1968438
    22 https://doi.org/10.2307/1969798
    23 https://doi.org/10.2307/2154659
    24 https://doi.org/10.4064/bc67-0-5
    25 schema:datePublished 2009-10
    26 schema:datePublishedReg 2009-10-01
    27 schema:description We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N0b791433e63e4ee6ba177b2a90c7b2f3
    32 N8f6adf22688743cdb7759ba3975e35c2
    33 sg:journal.1136516
    34 schema:name Holomorphic functions of exponential type and duality for stein groups with algebraic connected component of identity
    35 schema:pagination 459
    36 schema:productId N88d5066670d24ae78e898d493ab49cbf
    37 N9fe9d5567bd54187af4dab932117db2c
    38 Nb3a392d365cb44aaabc82a2055009ae1
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024560685
    40 https://doi.org/10.1007/s10958-009-9646-1
    41 schema:sdDatePublished 2019-04-11T09:41
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N8b4f7b3edfc6460c8a36999933ac5be0
    44 schema:url http://link.springer.com/10.1007%2Fs10958-009-9646-1
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N0b791433e63e4ee6ba177b2a90c7b2f3 schema:volumeNumber 162
    49 rdf:type schema:PublicationVolume
    50 N58b866cee7a24cf890b42dc35bfbb2a8 rdf:first sg:person.014773305541.52
    51 rdf:rest rdf:nil
    52 N88d5066670d24ae78e898d493ab49cbf schema:name readcube_id
    53 schema:value 7501e3d33e902d12c821b0265e4b61695a97037b529af5c230cdeea459483efc
    54 rdf:type schema:PropertyValue
    55 N8b4f7b3edfc6460c8a36999933ac5be0 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N8f6adf22688743cdb7759ba3975e35c2 schema:issueNumber 4
    58 rdf:type schema:PublicationIssue
    59 N9fe9d5567bd54187af4dab932117db2c schema:name dimensions_id
    60 schema:value pub.1024560685
    61 rdf:type schema:PropertyValue
    62 Nb3a392d365cb44aaabc82a2055009ae1 schema:name doi
    63 schema:value 10.1007/s10958-009-9646-1
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1136516 schema:issn 1072-3374
    72 1573-8795
    73 schema:name Journal of Mathematical Sciences
    74 rdf:type schema:Periodical
    75 sg:person.014773305541.52 schema:affiliation https://www.grid.ac/institutes/grid.463015.5
    76 schema:familyName Akbarov
    77 schema:givenName S. S.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014773305541.52
    79 rdf:type schema:Person
    80 sg:pub.10.1007/978-3-322-90559-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005178610
    81 https://doi.org/10.1007/978-3-322-90559-8
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/978-3-662-02813-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003205195
    84 https://doi.org/10.1007/978-3-662-02813-1
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf01234921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022576496
    87 https://doi.org/10.1007/bf01234921
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf02028316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022667835
    90 https://doi.org/10.1007/bf02028316
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1023/a:1020929201133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050463327
    93 https://doi.org/10.1023/a:1020929201133
    94 rdf:type schema:CreativeWork
    95 https://app.dimensions.ai/details/publication/pub.1003205195 schema:CreativeWork
    96 https://doi.org/10.1006/aima.1998.1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039594743
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/s0012-9593(00)01055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020273988
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1017/cbo9780511810817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732013
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1090/gsm/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710018
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1090/s0002-9904-1967-11677-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013720349
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1090/s0002-9947-1994-1220906-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050865620
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1090/s0077-1554-08-00169-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028158627
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1112/blms/25.3.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035842653
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1142/s0129167x01000836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062901946
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1215/s0012-7094-73-04078-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418615
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1515/9783110808148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096920713
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.2307/1968438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673868
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.2307/1969798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675161
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2307/2154659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069793525
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.4064/bc67-0-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099285566
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.463015.5 schema:alternateName All Russian Institute for Scientific and Technical Information
    127 schema:name All-Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences (VINITI RAN), Usievich Street, 20, 125190, Moscow, Russia
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...