Factorization of the R-matrix and Baxter’s Q-operator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05

AUTHORS

S. E. Derkachov

ABSTRACT

The general rational solution of the Yang-Baxter equation with the symmetry algebra sℓ(2) can be represented as a product of simpler building blocks called -operators. -operators are constructed explicitly and have simple structure. Using -operators, we construct the two-parametric Baxter’s Q-operator for the generic inhomogeneous XXX-spin chain. In the case of a homogeneous XXX-spin chain, it is possible to reduce the general Q-operator to a much simpler one-parametric Q-operator. Bibliography: 22 titles. More... »

PAGES

2880

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-008-9010-x

DOI

http://dx.doi.org/10.1007/s10958-008-9010-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013391474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derkachov", 
        "givenName": "S. E.", 
        "id": "sg:person.010324735423.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002200000235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001076393", 
          "https://doi.org/10.1007/s002200000235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009155149", 
          "https://doi.org/10.1007/s002200050240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/33/20/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009940826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(96)01526-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/33/1/311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015245660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-11190-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015346073", 
          "https://doi.org/10.1007/3-540-11190-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781887", 
          "https://doi.org/10.1007/bf02096799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781887", 
          "https://doi.org/10.1007/bf02096799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02285311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033113586", 
          "https://doi.org/10.1007/bf02285311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02285311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033113586", 
          "https://doi.org/10.1007/bf02285311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/35/47/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035098392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040801893", 
          "https://doi.org/10.1007/bf01025851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007390915590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043434291", 
          "https://doi.org/10.1023/a:1007390915590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/32/28/309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045128590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/25/20/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059072515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-05", 
    "datePublishedReg": "2008-05-01", 
    "description": "The general rational solution of the Yang-Baxter equation with the symmetry algebra s\u2113(2) can be represented as a product of simpler building blocks called -operators. -operators are constructed explicitly and have simple structure. Using -operators, we construct the two-parametric Baxter\u2019s Q-operator for the generic inhomogeneous XXX-spin chain. In the case of a homogeneous XXX-spin chain, it is possible to reduce the general Q-operator to a much simpler one-parametric Q-operator. Bibliography: 22 titles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-008-9010-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "151"
      }
    ], 
    "name": "Factorization of the R-matrix and Baxter\u2019s Q-operator", 
    "pagination": "2880", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3fcb8e39c9dbdb015c158185a9d9dcb95b99b2e2510d9f7d4399fe88f41b57fa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-008-9010-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013391474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-008-9010-x", 
      "https://app.dimensions.ai/details/publication/pub.1013391474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-008-9010-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-9010-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-9010-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-9010-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-9010-x'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-008-9010-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N11ae4b57cf654159b348e779d3f0e6ea
4 schema:citation sg:pub.10.1007/3-540-11190-5_8
5 sg:pub.10.1007/bf01025851
6 sg:pub.10.1007/bf02096799
7 sg:pub.10.1007/bf02285311
8 sg:pub.10.1007/s002200000235
9 sg:pub.10.1007/s002200050240
10 sg:pub.10.1023/a:1007390915590
11 https://doi.org/10.1016/s0370-2693(96)01526-2
12 https://doi.org/10.1088/0305-4470/25/20/007
13 https://doi.org/10.1088/0305-4470/32/28/309
14 https://doi.org/10.1088/0305-4470/33/1/311
15 https://doi.org/10.1088/0305-4470/33/20/308
16 https://doi.org/10.1088/0305-4470/35/47/304
17 schema:datePublished 2008-05
18 schema:datePublishedReg 2008-05-01
19 schema:description The general rational solution of the Yang-Baxter equation with the symmetry algebra sℓ(2) can be represented as a product of simpler building blocks called -operators. -operators are constructed explicitly and have simple structure. Using -operators, we construct the two-parametric Baxter’s Q-operator for the generic inhomogeneous XXX-spin chain. In the case of a homogeneous XXX-spin chain, it is possible to reduce the general Q-operator to a much simpler one-parametric Q-operator. Bibliography: 22 titles.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N36443750e4a74bbca01e56c1516b69e0
24 N8aa3479217514c86861ddfdde572a236
25 sg:journal.1136516
26 schema:name Factorization of the R-matrix and Baxter’s Q-operator
27 schema:pagination 2880
28 schema:productId N13c934b1e7954f86a3fa2acca8c18fa9
29 N2f6fd7a0fb944946b1ee7e2fc3551e22
30 N835af635880d49b688b0b1f302c40266
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013391474
32 https://doi.org/10.1007/s10958-008-9010-x
33 schema:sdDatePublished 2019-04-10T13:16
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N87e6afe184a346daa3bed551b57798f4
36 schema:url http://link.springer.com/10.1007%2Fs10958-008-9010-x
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N11ae4b57cf654159b348e779d3f0e6ea rdf:first sg:person.010324735423.83
41 rdf:rest rdf:nil
42 N13c934b1e7954f86a3fa2acca8c18fa9 schema:name readcube_id
43 schema:value 3fcb8e39c9dbdb015c158185a9d9dcb95b99b2e2510d9f7d4399fe88f41b57fa
44 rdf:type schema:PropertyValue
45 N2f6fd7a0fb944946b1ee7e2fc3551e22 schema:name doi
46 schema:value 10.1007/s10958-008-9010-x
47 rdf:type schema:PropertyValue
48 N36443750e4a74bbca01e56c1516b69e0 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 N835af635880d49b688b0b1f302c40266 schema:name dimensions_id
51 schema:value pub.1013391474
52 rdf:type schema:PropertyValue
53 N87e6afe184a346daa3bed551b57798f4 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N8aa3479217514c86861ddfdde572a236 schema:volumeNumber 151
56 rdf:type schema:PublicationVolume
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136516 schema:issn 1072-3374
64 1573-8795
65 schema:name Journal of Mathematical Sciences
66 rdf:type schema:Periodical
67 sg:person.010324735423.83 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
68 schema:familyName Derkachov
69 schema:givenName S. E.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83
71 rdf:type schema:Person
72 sg:pub.10.1007/3-540-11190-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015346073
73 https://doi.org/10.1007/3-540-11190-5_8
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01025851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040801893
76 https://doi.org/10.1007/bf01025851
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf02096799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026781887
79 https://doi.org/10.1007/bf02096799
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02285311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033113586
82 https://doi.org/10.1007/bf02285311
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s002200000235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001076393
85 https://doi.org/10.1007/s002200000235
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s002200050240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009155149
88 https://doi.org/10.1007/s002200050240
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1007390915590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043434291
91 https://doi.org/10.1023/a:1007390915590
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0370-2693(96)01526-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740780
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1088/0305-4470/25/20/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072515
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0305-4470/32/28/309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045128590
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0305-4470/33/1/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015245660
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0305-4470/33/20/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009940826
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/0305-4470/35/47/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035098392
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
106 schema:name St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...