On uniform estimates for solutions to quasi-linear differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-05

AUTHORS

I. V. Astashova

ABSTRACT

We obtain uniform estimates for positive solutions with the same domain to the equation of even order n with k > 1 and continuous functions p(x) > 0 and ai(x). In the case where a0(x) ≡ ⋯ ≡ an−1(x) ≡ 0, the uniform estimates obtained depend on p = inf p(x) > 0 and are independent of the function p(x) itself. More... »

PAGES

2455-2459

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-008-0143-8

DOI

http://dx.doi.org/10.1007/s10958-008-0143-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045257185


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Higher Mathematics, Moscow State University of Economics, Statistics, and Informatics, Nezhinskaya st. 7, 119501, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashova", 
        "givenName": "I. V.", 
        "id": "sg:person.012450371632.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1142/9789812794253_0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096040831"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-05", 
    "datePublishedReg": "2008-05-01", 
    "description": "We obtain uniform estimates for positive solutions with the same domain to the equation of even order n with k > 1 and continuous functions p(x) > 0 and ai(x). In the case where a0(x) \u2261 \u22ef \u2261 an\u22121(x) \u2261 0, the uniform estimates obtained depend on p = inf p(x) > 0 and are independent of the function p(x) itself.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-008-0143-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "150"
      }
    ], 
    "name": "On uniform estimates for solutions to quasi-linear differential equations", 
    "pagination": "2455-2459", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7938844a93faf500c2a1c81a5d68bcb8d7dd9b547c9b3b3153d10a7e5976d84"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-008-0143-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045257185"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-008-0143-8", 
      "https://app.dimensions.ai/details/publication/pub.1045257185"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-008-0143-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-0143-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-0143-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-0143-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-008-0143-8'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-008-0143-8 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ne5c988cde6fc409f872f31301457ba90
4 schema:citation https://doi.org/10.1142/9789812794253_0111
5 schema:datePublished 2008-05
6 schema:datePublishedReg 2008-05-01
7 schema:description We obtain uniform estimates for positive solutions with the same domain to the equation of even order n with k > 1 and continuous functions p(x) > 0 and ai(x). In the case where a0(x) ≡ ⋯ ≡ an−1(x) ≡ 0, the uniform estimates obtained depend on p = inf p(x) > 0 and are independent of the function p(x) itself.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N56f45988fed0413dbb567ca2b47528b7
12 Nce9998c05a774181975332961e22e25b
13 sg:journal.1136516
14 schema:name On uniform estimates for solutions to quasi-linear differential equations
15 schema:pagination 2455-2459
16 schema:productId N41cd7e94020b41d99b84ad4438b6baef
17 N7ba995ca4cd648dbac0b18a75e2d0362
18 Nde81502372804b599fb36f763bed1bdc
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045257185
20 https://doi.org/10.1007/s10958-008-0143-8
21 schema:sdDatePublished 2019-04-10T20:48
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nb5853a652779468dba58c5730cf24a6a
24 schema:url http://link.springer.com/10.1007%2Fs10958-008-0143-8
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N41cd7e94020b41d99b84ad4438b6baef schema:name readcube_id
29 schema:value d7938844a93faf500c2a1c81a5d68bcb8d7dd9b547c9b3b3153d10a7e5976d84
30 rdf:type schema:PropertyValue
31 N56f45988fed0413dbb567ca2b47528b7 schema:issueNumber 6
32 rdf:type schema:PublicationIssue
33 N7ba995ca4cd648dbac0b18a75e2d0362 schema:name dimensions_id
34 schema:value pub.1045257185
35 rdf:type schema:PropertyValue
36 Nb5853a652779468dba58c5730cf24a6a schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Nce9998c05a774181975332961e22e25b schema:volumeNumber 150
39 rdf:type schema:PublicationVolume
40 Nde81502372804b599fb36f763bed1bdc schema:name doi
41 schema:value 10.1007/s10958-008-0143-8
42 rdf:type schema:PropertyValue
43 Ne5c988cde6fc409f872f31301457ba90 rdf:first sg:person.012450371632.48
44 rdf:rest rdf:nil
45 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
46 schema:name Information and Computing Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
49 schema:name Data Format
50 rdf:type schema:DefinedTerm
51 sg:journal.1136516 schema:issn 1072-3374
52 1573-8795
53 schema:name Journal of Mathematical Sciences
54 rdf:type schema:Periodical
55 sg:person.012450371632.48 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
56 schema:familyName Astashova
57 schema:givenName I. V.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48
59 rdf:type schema:Person
60 https://doi.org/10.1142/9789812794253_0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096040831
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
63 schema:name Department of Higher Mathematics, Moscow State University of Economics, Statistics, and Informatics, Nezhinskaya st. 7, 119501, Moscow, Russia
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...