Canonical representation of tangent vectors of Grassmannians View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01

AUTHORS

M. Yu. Nikanorova

ABSTRACT

The structure of the tangent bundle of the real Grassmann manifold G+p,n under the Plücker embedding (in the exterior algebra of the initial Euclidean space) is studied. Explicit expressions for the relation between decompositions of a tangent vector with respect to different bases of the tangent space are obtained, and a constructivemethod yielding the canonical (= simplest) decomposition is presented. Bibliography: 8 titles. More... »

PAGES

582-588

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-007-0440-7

DOI

http://dx.doi.org/10.1007/s10958-007-0440-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013381167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St.Petersburg State University, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikanorova", 
        "givenName": "M. Yu.", 
        "id": "sg:person.014306004257.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306004257.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01210982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035858773", 
          "https://doi.org/10.1007/bf01210982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035858773", 
          "https://doi.org/10.1007/bf01210982"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The structure of the tangent bundle of the real Grassmann manifold G+p,n under the Pl\u00fccker embedding (in the exterior algebra of the initial Euclidean space) is studied. Explicit expressions for the relation between decompositions of a tangent vector with respect to different bases of the tangent space are obtained, and a constructivemethod yielding the canonical (= simplest) decomposition is presented. Bibliography: 8 titles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-007-0440-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "140"
      }
    ], 
    "name": "Canonical representation of tangent vectors of Grassmannians", 
    "pagination": "582-588", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3fbecd78f03922bbce12b171cd5aed0fb49c4e94a2c8a666f7660973d4ca79e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-007-0440-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013381167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-007-0440-7", 
      "https://app.dimensions.ai/details/publication/pub.1013381167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-007-0440-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0440-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0440-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0440-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0440-7'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-007-0440-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfe71a1d93d3d40a7a6773fdd1536255a
4 schema:citation sg:pub.10.1007/bf01210982
5 schema:datePublished 2007-01
6 schema:datePublishedReg 2007-01-01
7 schema:description The structure of the tangent bundle of the real Grassmann manifold G+p,n under the Plücker embedding (in the exterior algebra of the initial Euclidean space) is studied. Explicit expressions for the relation between decompositions of a tangent vector with respect to different bases of the tangent space are obtained, and a constructivemethod yielding the canonical (= simplest) decomposition is presented. Bibliography: 8 titles.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N24c43706c5fe46d2a2aa392294ff58de
12 N87ae6cdef7b34131b89d73ee2ed36893
13 sg:journal.1136516
14 schema:name Canonical representation of tangent vectors of Grassmannians
15 schema:pagination 582-588
16 schema:productId N016aa8fb1ffb4e87bd7bb8d213daed6b
17 N20a2372c437349f98f23781f6db5b68a
18 Nd8733658624444b89cfb7121b17ade6f
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013381167
20 https://doi.org/10.1007/s10958-007-0440-7
21 schema:sdDatePublished 2019-04-10T19:08
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N49affddad02b4f11b53542aec1df30de
24 schema:url http://link.springer.com/10.1007%2Fs10958-007-0440-7
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N016aa8fb1ffb4e87bd7bb8d213daed6b schema:name doi
29 schema:value 10.1007/s10958-007-0440-7
30 rdf:type schema:PropertyValue
31 N20a2372c437349f98f23781f6db5b68a schema:name readcube_id
32 schema:value 3fbecd78f03922bbce12b171cd5aed0fb49c4e94a2c8a666f7660973d4ca79e2
33 rdf:type schema:PropertyValue
34 N24c43706c5fe46d2a2aa392294ff58de schema:volumeNumber 140
35 rdf:type schema:PublicationVolume
36 N49affddad02b4f11b53542aec1df30de schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N87ae6cdef7b34131b89d73ee2ed36893 schema:issueNumber 4
39 rdf:type schema:PublicationIssue
40 Nd8733658624444b89cfb7121b17ade6f schema:name dimensions_id
41 schema:value pub.1013381167
42 rdf:type schema:PropertyValue
43 Nfe71a1d93d3d40a7a6773fdd1536255a rdf:first sg:person.014306004257.02
44 rdf:rest rdf:nil
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136516 schema:issn 1072-3374
52 1573-8795
53 schema:name Journal of Mathematical Sciences
54 rdf:type schema:Periodical
55 sg:person.014306004257.02 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
56 schema:familyName Nikanorova
57 schema:givenName M. Yu.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306004257.02
59 rdf:type schema:Person
60 sg:pub.10.1007/bf01210982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035858773
61 https://doi.org/10.1007/bf01210982
62 rdf:type schema:CreativeWork
63 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
64 schema:name St.Petersburg State University, St.Petersburg, Russia
65 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...