Factorization of the R-matrix. I View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05

AUTHORS

S. E. Derkachov

ABSTRACT

We study the general rational solution of the Yang-Baxter equation with the symmetry algebra sℓ(3). The R-operator which acts in the tensor product of two arbitrary representations of the symmetry algebra can be represented as a product of simpler “building blocks,” R-operators. The R-operators are constructed explicitly and have a simple structure. In such a way, we construct the general rational solution of the Yang-Baxter equation with the symmetry algebra s sℓ(3). To illustrate the factorization in the simplest situation, we treat also the sℓ(2) case. Bibliography: 23 titles. More... »

PAGES

2773-2790

References to SciGraph publications

  • 1988-01. Classical limits of the SU(2)-invariant solutions of the Yang-Baxter equation in JOURNAL OF SOVIET MATHEMATICS
  • 1982. Quantum spectral transform method recent developments in INTEGRABLE QUANTUM FIELD THEORIES
  • 1981-09. Yang-Baxter equation and representation theory: I in LETTERS IN MATHEMATICAL PHYSICS
  • 1999-05. Drinfel'd Twists and Functional Bethe Ansatz in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-007-0164-8

    DOI

    http://dx.doi.org/10.1007/s10958-007-0164-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049146692


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Derkachov", 
            "givenName": "S. E.", 
            "id": "sg:person.010324735423.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1007695001683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007661962", 
              "https://doi.org/10.1023/a:1007695001683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-11190-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015346073", 
              "https://doi.org/10.1007/3-540-11190-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)01363-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021720737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01084941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025770107", 
              "https://doi.org/10.1007/bf01084941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01084941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025770107", 
              "https://doi.org/10.1007/bf01084941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02285311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033113586", 
              "https://doi.org/10.1007/bf02285311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02285311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033113586", 
              "https://doi.org/10.1007/bf02285311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00488-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042124964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1996v051n02abeh002772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058196786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/24/17/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059071760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.19.1312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060770149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.19.1312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060770149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/3081-vol2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098875814"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-05", 
        "datePublishedReg": "2007-05-01", 
        "description": "We study the general rational solution of the Yang-Baxter equation with the symmetry algebra s\u2113(3). The R-operator which acts in the tensor product of two arbitrary representations of the symmetry algebra can be represented as a product of simpler \u201cbuilding blocks,\u201d R-operators. The R-operators are constructed explicitly and have a simple structure. In such a way, we construct the general rational solution of the Yang-Baxter equation with the symmetry algebra s s\u2113(3). To illustrate the factorization in the simplest situation, we treat also the s\u2113(2) case. Bibliography: 23 titles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-007-0164-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "143"
          }
        ], 
        "name": "Factorization of the R-matrix. I", 
        "pagination": "2773-2790", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ea20729cb01feb5bd360215d4ba85f074d546e3711ab76aced04f699806f0459"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-007-0164-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049146692"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-007-0164-8", 
          "https://app.dimensions.ai/details/publication/pub.1049146692"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000595.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-007-0164-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0164-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0164-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0164-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-007-0164-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-007-0164-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1ef6716567594ca69479791215336e3f
    4 schema:citation sg:pub.10.1007/3-540-11190-5_8
    5 sg:pub.10.1007/bf01084941
    6 sg:pub.10.1007/bf02285311
    7 sg:pub.10.1023/a:1007695001683
    8 https://doi.org/10.1016/0370-2693(94)01363-h
    9 https://doi.org/10.1016/s0550-3213(01)00488-6
    10 https://doi.org/10.1070/rm1996v051n02abeh002772
    11 https://doi.org/10.1088/0305-4470/24/17/018
    12 https://doi.org/10.1103/physrevlett.19.1312
    13 https://doi.org/10.1142/3081-vol2
    14 schema:datePublished 2007-05
    15 schema:datePublishedReg 2007-05-01
    16 schema:description We study the general rational solution of the Yang-Baxter equation with the symmetry algebra sℓ(3). The R-operator which acts in the tensor product of two arbitrary representations of the symmetry algebra can be represented as a product of simpler “building blocks,” R-operators. The R-operators are constructed explicitly and have a simple structure. In such a way, we construct the general rational solution of the Yang-Baxter equation with the symmetry algebra s sℓ(3). To illustrate the factorization in the simplest situation, we treat also the sℓ(2) case. Bibliography: 23 titles.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N4bd99875a20740fbb924e5dfbe795212
    21 N8dc86b237bd7483cb22a77b30768cdd0
    22 sg:journal.1136516
    23 schema:name Factorization of the R-matrix. I
    24 schema:pagination 2773-2790
    25 schema:productId N19b28b5ff026474ea2c1d6885db10e62
    26 N60d5840ad917471bb7dc7b6057a3e652
    27 N7b8129e64c474b6ca074b589ef35589f
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049146692
    29 https://doi.org/10.1007/s10958-007-0164-8
    30 schema:sdDatePublished 2019-04-10T18:32
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N35d444565793488fa90ac25828765da8
    33 schema:url http://link.springer.com/10.1007%2Fs10958-007-0164-8
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N19b28b5ff026474ea2c1d6885db10e62 schema:name doi
    38 schema:value 10.1007/s10958-007-0164-8
    39 rdf:type schema:PropertyValue
    40 N1ef6716567594ca69479791215336e3f rdf:first sg:person.010324735423.83
    41 rdf:rest rdf:nil
    42 N35d444565793488fa90ac25828765da8 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N4bd99875a20740fbb924e5dfbe795212 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N60d5840ad917471bb7dc7b6057a3e652 schema:name readcube_id
    47 schema:value ea20729cb01feb5bd360215d4ba85f074d546e3711ab76aced04f699806f0459
    48 rdf:type schema:PropertyValue
    49 N7b8129e64c474b6ca074b589ef35589f schema:name dimensions_id
    50 schema:value pub.1049146692
    51 rdf:type schema:PropertyValue
    52 N8dc86b237bd7483cb22a77b30768cdd0 schema:volumeNumber 143
    53 rdf:type schema:PublicationVolume
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136516 schema:issn 1072-3374
    61 1573-8795
    62 schema:name Journal of Mathematical Sciences
    63 rdf:type schema:Periodical
    64 sg:person.010324735423.83 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    65 schema:familyName Derkachov
    66 schema:givenName S. E.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324735423.83
    68 rdf:type schema:Person
    69 sg:pub.10.1007/3-540-11190-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015346073
    70 https://doi.org/10.1007/3-540-11190-5_8
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/bf01084941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025770107
    73 https://doi.org/10.1007/bf01084941
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf02285311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033113586
    76 https://doi.org/10.1007/bf02285311
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1023/a:1007695001683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007661962
    79 https://doi.org/10.1023/a:1007695001683
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0370-2693(94)01363-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021720737
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0550-3213(01)00488-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042124964
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1070/rm1996v051n02abeh002772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196786
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1088/0305-4470/24/17/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059071760
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrevlett.19.1312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770149
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1142/3081-vol2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098875814
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    94 schema:name St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...