Ontology type: schema:ScholarlyArticle
2006-05
AUTHORS ABSTRACTThe purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection). More... »
PAGES2721-2748
http://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8
DOIhttp://dx.doi.org/10.1007/s10958-006-0140-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008843011
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"familyName": "Palin",
"givenName": "V. V.",
"id": "sg:person.010367777627.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367777627.70"
],
"type": "Person"
},
{
"familyName": "Radkevich",
"givenName": "E. V.",
"id": "sg:person.010212007350.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02179552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003473715",
"https://doi.org/10.1007/bf02179552"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02179552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003473715",
"https://doi.org/10.1007/bf02179552"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/1521-3889(200211)11:10/11<783::aid-andp783>3.0.co;2-v",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015033039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001610100036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015360148",
"https://doi.org/10.1007/s001610100036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001610100036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015360148",
"https://doi.org/10.1007/s001610100036"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0077-1554-04-00147-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020584350"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1039-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022237469",
"https://doi.org/10.1007/978-1-4612-1039-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1039-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022237469",
"https://doi.org/10.1007/978-1-4612-1039-9"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1041005029",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0121-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041005029",
"https://doi.org/10.1007/978-1-4684-0121-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0121-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041005029",
"https://doi.org/10.1007/978-1-4684-0121-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/andp.19293950803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041128657"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01135371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042730745",
"https://doi.org/10.1007/bf01135371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01135371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042730745",
"https://doi.org/10.1007/bf01135371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02179864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047403118",
"https://doi.org/10.1007/bf02179864"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02179864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047403118",
"https://doi.org/10.1007/bf02179864"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1047633579",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0447-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047633579",
"https://doi.org/10.1007/978-1-4684-0447-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0447-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047633579",
"https://doi.org/10.1007/978-1-4684-0447-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001610050119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050730214",
"https://doi.org/10.1007/s001610050119"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s001610050119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050730214",
"https://doi.org/10.1007/s001610050119"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/14/4/314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059109018"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.148.766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060433430"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.148.766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060433430"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.11.2500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060519463"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.11.2500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060519463"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.5.3315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060572017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.5.3315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060572017"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.53.498",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060719290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.53.498",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060719290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1121/1.1582443",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062268570"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-05",
"datePublishedReg": "2006-05-01",
"description": "The purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection).",
"genre": "research_article",
"id": "sg:pub.10.1007/s10958-006-0140-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136516",
"issn": [
"1072-3374",
"1573-8795"
],
"name": "Journal of Mathematical Sciences",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "135"
}
],
"name": "Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations",
"pagination": "2721-2748",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2a2197b107e6141f35e672057e2378ed5fdc92732c3d2b195680b31c6d043b43"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10958-006-0140-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008843011"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10958-006-0140-8",
"https://app.dimensions.ai/details/publication/pub.1008843011"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:56",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71673_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10958-006-0140-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
21 PREDICATES
46 URIs
19 LITERALS
7 BLANK NODES