Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-05

AUTHORS

V. V. Palin, E. V. Radkevich

ABSTRACT

The purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection). More... »

PAGES

2721-2748

References to SciGraph publications

  • 2000-04. Temperature jump and velocity slip in the moment method in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 2001-02. Hyperbolicity region in extended thermodynamics with 14 moments in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1993. Extended Thermodynamics in NONE
  • 1995-09. Quasistationary hydrodynamics for the Boltzmann equation in JOURNAL OF STATISTICAL PHYSICS
  • 1993-03. Heat pulse experiments revisited in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1981. Quantum Physics, A Functional Integral Point of View in NONE
  • 1988. The Boltzmann Equation and Its Applications in NONE
  • 1996-06. Moment closure hierarchies for kinetic theories in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8

    DOI

    http://dx.doi.org/10.1007/s10958-006-0140-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008843011


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Palin", 
            "givenName": "V. V.", 
            "id": "sg:person.010367777627.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367777627.70"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Radkevich", 
            "givenName": "E. V.", 
            "id": "sg:person.010212007350.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-3889(200211)11:10/11<783::aid-andp783>3.0.co;2-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015033039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610100036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015360148", 
              "https://doi.org/10.1007/s001610100036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610100036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015360148", 
              "https://doi.org/10.1007/s001610100036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0077-1554-04-00147-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020584350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022237469", 
              "https://doi.org/10.1007/978-1-4612-1039-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022237469", 
              "https://doi.org/10.1007/978-1-4612-1039-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1041005029", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041005029", 
              "https://doi.org/10.1007/978-1-4684-0121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041005029", 
              "https://doi.org/10.1007/978-1-4684-0121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19293950803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041128657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01135371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042730745", 
              "https://doi.org/10.1007/bf01135371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01135371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042730745", 
              "https://doi.org/10.1007/bf01135371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047403118", 
              "https://doi.org/10.1007/bf02179864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047403118", 
              "https://doi.org/10.1007/bf02179864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1047633579", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047633579", 
              "https://doi.org/10.1007/978-1-4684-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047633579", 
              "https://doi.org/10.1007/978-1-4684-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610050119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730214", 
              "https://doi.org/10.1007/s001610050119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001610050119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050730214", 
              "https://doi.org/10.1007/s001610050119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/14/4/314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059109018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.148.766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.148.766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.11.2500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060519463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.11.2500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060519463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.5.3315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.5.3315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.53.498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.53.498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.1582443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062268570"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-05", 
        "datePublishedReg": "2006-05-01", 
        "description": "The purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-006-0140-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "135"
          }
        ], 
        "name": "Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations", 
        "pagination": "2721-2748", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2a2197b107e6141f35e672057e2378ed5fdc92732c3d2b195680b31c6d043b43"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-006-0140-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008843011"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-006-0140-8", 
          "https://app.dimensions.ai/details/publication/pub.1008843011"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71673_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-006-0140-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0140-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-006-0140-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4e883e97a1f6488aae1f3e20e1e41c7f
    4 schema:citation sg:pub.10.1007/978-1-4612-1039-9
    5 sg:pub.10.1007/978-1-4684-0121-9
    6 sg:pub.10.1007/978-1-4684-0447-0
    7 sg:pub.10.1007/bf01135371
    8 sg:pub.10.1007/bf02179552
    9 sg:pub.10.1007/bf02179864
    10 sg:pub.10.1007/s001610050119
    11 sg:pub.10.1007/s001610100036
    12 https://app.dimensions.ai/details/publication/pub.1041005029
    13 https://app.dimensions.ai/details/publication/pub.1047633579
    14 https://doi.org/10.1002/1521-3889(200211)11:10/11<783::aid-andp783>3.0.co;2-v
    15 https://doi.org/10.1002/andp.19293950803
    16 https://doi.org/10.1088/0951-7715/14/4/314
    17 https://doi.org/10.1090/s0077-1554-04-00147-5
    18 https://doi.org/10.1103/physrev.148.766
    19 https://doi.org/10.1103/physrevb.11.2500
    20 https://doi.org/10.1103/physrevb.5.3315
    21 https://doi.org/10.1103/physreve.53.498
    22 https://doi.org/10.1121/1.1582443
    23 schema:datePublished 2006-05
    24 schema:datePublishedReg 2006-05-01
    25 schema:description The purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection).
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Ndccc348163ba494298e5553e2a92f26e
    30 Ndf9223248ba64b1b8958b02bd2d783c6
    31 sg:journal.1136516
    32 schema:name Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations
    33 schema:pagination 2721-2748
    34 schema:productId N0787304d32d04920a4f3388e7291040a
    35 N07b83fde15c04e7092ccf05db32aca35
    36 N6d25b4c100f4415ca1d2801a1d73babf
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008843011
    38 https://doi.org/10.1007/s10958-006-0140-8
    39 schema:sdDatePublished 2019-04-11T12:56
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Ncebe1aab54f94e84a6c9e81eb3bf7dae
    42 schema:url http://link.springer.com/10.1007%2Fs10958-006-0140-8
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0787304d32d04920a4f3388e7291040a schema:name dimensions_id
    47 schema:value pub.1008843011
    48 rdf:type schema:PropertyValue
    49 N07b83fde15c04e7092ccf05db32aca35 schema:name doi
    50 schema:value 10.1007/s10958-006-0140-8
    51 rdf:type schema:PropertyValue
    52 N37e5241e53aa44ebb31b35ac1b3dfe0a rdf:first sg:person.010212007350.31
    53 rdf:rest rdf:nil
    54 N4e883e97a1f6488aae1f3e20e1e41c7f rdf:first sg:person.010367777627.70
    55 rdf:rest N37e5241e53aa44ebb31b35ac1b3dfe0a
    56 N6d25b4c100f4415ca1d2801a1d73babf schema:name readcube_id
    57 schema:value 2a2197b107e6141f35e672057e2378ed5fdc92732c3d2b195680b31c6d043b43
    58 rdf:type schema:PropertyValue
    59 Ncebe1aab54f94e84a6c9e81eb3bf7dae schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Ndccc348163ba494298e5553e2a92f26e schema:volumeNumber 135
    62 rdf:type schema:PublicationVolume
    63 Ndf9223248ba64b1b8958b02bd2d783c6 schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1136516 schema:issn 1072-3374
    72 1573-8795
    73 schema:name Journal of Mathematical Sciences
    74 rdf:type schema:Periodical
    75 sg:person.010212007350.31 schema:familyName Radkevich
    76 schema:givenName E. V.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
    78 rdf:type schema:Person
    79 sg:person.010367777627.70 schema:familyName Palin
    80 schema:givenName V. V.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367777627.70
    82 rdf:type schema:Person
    83 sg:pub.10.1007/978-1-4612-1039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022237469
    84 https://doi.org/10.1007/978-1-4612-1039-9
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-1-4684-0121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041005029
    87 https://doi.org/10.1007/978-1-4684-0121-9
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-1-4684-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047633579
    90 https://doi.org/10.1007/978-1-4684-0447-0
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01135371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042730745
    93 https://doi.org/10.1007/bf01135371
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf02179552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473715
    96 https://doi.org/10.1007/bf02179552
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf02179864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047403118
    99 https://doi.org/10.1007/bf02179864
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s001610050119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730214
    102 https://doi.org/10.1007/s001610050119
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s001610100036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360148
    105 https://doi.org/10.1007/s001610100036
    106 rdf:type schema:CreativeWork
    107 https://app.dimensions.ai/details/publication/pub.1041005029 schema:CreativeWork
    108 https://app.dimensions.ai/details/publication/pub.1047633579 schema:CreativeWork
    109 https://doi.org/10.1002/1521-3889(200211)11:10/11<783::aid-andp783>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1015033039
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/andp.19293950803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041128657
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1088/0951-7715/14/4/314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109018
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1090/s0077-1554-04-00147-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020584350
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrev.148.766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433430
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevb.11.2500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060519463
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevb.5.3315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572017
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physreve.53.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719290
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1121/1.1582443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062268570
    126 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...