Some Exponential Integral Functionals of BM(μ) and BES(3) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03

AUTHORS

A. N. Borodin, P. Salminen

ABSTRACT

In the present paper, we derive the Laplace transforms of the integral functionals and where p and q are real numbers, {Bt(μ) : t ≥ 0} is a Brownian motion with drift μ > 0 (denoted BM(μ)), and {Rt(3) : t ≥ 0} is a 3-dimensional Bessel process (denoted BES(3)). The transforms are given in terms of Gauss' hypergeometric functions, and the results are closely related to some results for functionals of Jacobi diffusions. This work generalizes and completes some results of Donati-Martin and Yor and Salminen and Yor. Bibliography: 18 titles. More... »

PAGES

1231-1248

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10958-006-0033-x

DOI

http://dx.doi.org/10.1007/s10958-006-0033-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049029303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borodin", 
        "givenName": "A. N.", 
        "id": "sg:person.016033230057.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033230057.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c5bo Akademi University", 
          "id": "https://www.grid.ac/institutes/grid.13797.3b", 
          "name": [
            "Mathematical Department, Abo Akademi, Vanriksgatan 3 B, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salminen", 
        "givenName": "P.", 
        "id": "sg:person.012271756232.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271756232.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/03461238.1990.10413872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012223189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002190020010676x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013853485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025976100", 
          "https://doi.org/10.1007/978-1-4612-1170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025976100", 
          "https://doi.org/10.1007/978-1-4612-1170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-99-02421-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031344973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0101767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037829565", 
          "https://doi.org/10.1007/bfb0101767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039411348", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8163-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039411348", 
          "https://doi.org/10.1007/978-3-0348-8163-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8163-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039411348", 
          "https://doi.org/10.1007/978-3-0348-8163-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0119290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074613", 
          "https://doi.org/10.1007/bfb0119290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0119290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074613", 
          "https://doi.org/10.1007/bfb0119290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1024404505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228957"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "In the present paper, we derive the Laplace transforms of the integral functionals and where p and q are real numbers, {Bt(\u03bc) : t \u2265 0} is a Brownian motion with drift \u03bc > 0 (denoted BM(\u03bc)), and {Rt(3) : t \u2265 0} is a 3-dimensional Bessel process (denoted BES(3)). The transforms are given in terms of Gauss' hypergeometric functions, and the results are closely related to some results for functionals of Jacobi diffusions. This work generalizes and completes some results of Donati-Martin and Yor and Salminen and Yor. Bibliography: 18 titles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10958-006-0033-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "Some Exponential Integral Functionals of BM(\u03bc) and BES(3)", 
    "pagination": "1231-1248", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e991448f107c709c0d24c12367b2a296d76690ef41169a27f1ebe3c46fe27a86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10958-006-0033-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049029303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10958-006-0033-x", 
      "https://app.dimensions.ai/details/publication/pub.1049029303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10958-006-0033-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0033-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0033-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0033-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-006-0033-x'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10958-006-0033-x schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Na815009fd4c547fc9ab215b5d29f3e1c
4 schema:citation sg:pub.10.1007/978-1-4612-1170-9
5 sg:pub.10.1007/978-3-0348-8163-0
6 sg:pub.10.1007/bfb0101767
7 sg:pub.10.1007/bfb0119290
8 https://app.dimensions.ai/details/publication/pub.1039411348
9 https://doi.org/10.1017/s002190020010676x
10 https://doi.org/10.1080/03461238.1990.10413872
11 https://doi.org/10.1090/s0002-9947-99-02421-6
12 https://doi.org/10.1214/aop/1024404505
13 https://doi.org/10.2307/3214805
14 schema:datePublished 2006-03
15 schema:datePublishedReg 2006-03-01
16 schema:description In the present paper, we derive the Laplace transforms of the integral functionals and where p and q are real numbers, {Bt(μ) : t ≥ 0} is a Brownian motion with drift μ > 0 (denoted BM(μ)), and {Rt(3) : t ≥ 0} is a 3-dimensional Bessel process (denoted BES(3)). The transforms are given in terms of Gauss' hypergeometric functions, and the results are closely related to some results for functionals of Jacobi diffusions. This work generalizes and completes some results of Donati-Martin and Yor and Salminen and Yor. Bibliography: 18 titles.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7f0b0f8859a64f3ba10be315413dfd71
21 Nd14d2ed977974b2bb071d70a8d3157ec
22 sg:journal.1136516
23 schema:name Some Exponential Integral Functionals of BM(μ) and BES(3)
24 schema:pagination 1231-1248
25 schema:productId Na534455f46814650abd2e902ecdfacb3
26 Neab7f06242374667aeef3bcc0f08105e
27 Nf513c109e8d34873af79b76dfe47ac02
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049029303
29 https://doi.org/10.1007/s10958-006-0033-x
30 schema:sdDatePublished 2019-04-11T12:39
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N179bbd288d0d458eb99d3d0d13832892
33 schema:url http://link.springer.com/10.1007%2Fs10958-006-0033-x
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N179bbd288d0d458eb99d3d0d13832892 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N78e7f542f14a420fb1da9d7e9baf6369 rdf:first sg:person.012271756232.01
40 rdf:rest rdf:nil
41 N7f0b0f8859a64f3ba10be315413dfd71 schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 Na534455f46814650abd2e902ecdfacb3 schema:name dimensions_id
44 schema:value pub.1049029303
45 rdf:type schema:PropertyValue
46 Na815009fd4c547fc9ab215b5d29f3e1c rdf:first sg:person.016033230057.72
47 rdf:rest N78e7f542f14a420fb1da9d7e9baf6369
48 Nd14d2ed977974b2bb071d70a8d3157ec schema:volumeNumber 133
49 rdf:type schema:PublicationVolume
50 Neab7f06242374667aeef3bcc0f08105e schema:name readcube_id
51 schema:value e991448f107c709c0d24c12367b2a296d76690ef41169a27f1ebe3c46fe27a86
52 rdf:type schema:PropertyValue
53 Nf513c109e8d34873af79b76dfe47ac02 schema:name doi
54 schema:value 10.1007/s10958-006-0033-x
55 rdf:type schema:PropertyValue
56 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
57 schema:name Medical and Health Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
60 schema:name Neurosciences
61 rdf:type schema:DefinedTerm
62 sg:journal.1136516 schema:issn 1072-3374
63 1573-8795
64 schema:name Journal of Mathematical Sciences
65 rdf:type schema:Periodical
66 sg:person.012271756232.01 schema:affiliation https://www.grid.ac/institutes/grid.13797.3b
67 schema:familyName Salminen
68 schema:givenName P.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271756232.01
70 rdf:type schema:Person
71 sg:person.016033230057.72 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
72 schema:familyName Borodin
73 schema:givenName A. N.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033230057.72
75 rdf:type schema:Person
76 sg:pub.10.1007/978-1-4612-1170-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025976100
77 https://doi.org/10.1007/978-1-4612-1170-9
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/978-3-0348-8163-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039411348
80 https://doi.org/10.1007/978-3-0348-8163-0
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bfb0101767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037829565
83 https://doi.org/10.1007/bfb0101767
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bfb0119290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074613
86 https://doi.org/10.1007/bfb0119290
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1039411348 schema:CreativeWork
89 https://doi.org/10.1017/s002190020010676x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013853485
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1080/03461238.1990.10413872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012223189
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1090/s0002-9947-99-02421-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031344973
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1214/aop/1024404505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403184
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/3214805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228957
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.13797.3b schema:alternateName Åbo Akademi University
100 schema:name Mathematical Department, Abo Akademi, Vanriksgatan 3 B, Finland
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
103 schema:name St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg, Russia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...