λ-Topologies on Function Spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-12

AUTHORS

N. V. Velichko

ABSTRACT

This paper is devoted to the spaces Cλ(X) of all continuous real-valued functions on X endowed with arbitrary λ-topologies. This is a fairly complete survey of the results obtained by the author in the following domains of the theory of λ-topologies: cardinal functions; locally convex properties; weak and strong topologies; dual spaces; lattices of λ-topologies; completeness. More... »

PAGES

5701-5737

References to SciGraph publications

  • 1995-11. C(X) in the weak topology in GEORGIAN MATHEMATICAL JOURNAL
  • 1958. Normed Linear Spaces in NONE
  • 1998-05. On a family of λ-topologies on a function space in SIBERIAN MATHEMATICAL JOURNAL
  • 1976. Espaces de Fonctions Continues in NONE
  • 1992. Topological Function Spaces in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10958-005-0443-1

    DOI

    http://dx.doi.org/10.1007/s10958-005-0443-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040813168


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics and Mechanics", 
              "id": "https://www.grid.ac/institutes/grid.465287.a", 
              "name": [
                "Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, 16 ul. S. Kovalevskoj, 620066, Ekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Velichko", 
            "givenName": "N. V.", 
            "id": "sg:person.07736604046.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736604046.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0079245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001660928", 
              "https://doi.org/10.1007/bfb0079245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001660928", 
              "https://doi.org/10.1007/bfb0079245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02262860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008526840", 
              "https://doi.org/10.1007/bf02262860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02262860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008526840", 
              "https://doi.org/10.1007/bf02262860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1991-1065602-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017145356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-8641(99)00089-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029892808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-25249-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041135193", 
              "https://doi.org/10.1007/978-3-662-25249-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-25249-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041135193", 
              "https://doi.org/10.1007/978-3-662-25249-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02673897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048088357", 
              "https://doi.org/10.1007/bf02673897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2001884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069691287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2372076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069898773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-2598-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716953", 
              "https://doi.org/10.1007/978-94-011-2598-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-2598-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716953", 
              "https://doi.org/10.1007/978-94-011-2598-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-12", 
        "datePublishedReg": "2005-12-01", 
        "description": "This paper is devoted to the spaces C\u03bb(X) of all continuous real-valued functions on X endowed with arbitrary \u03bb-topologies. This is a fairly complete survey of the results obtained by the author in the following domains of the theory of \u03bb-topologies: cardinal functions; locally convex properties; weak and strong topologies; dual spaces; lattices of \u03bb-topologies; completeness.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10958-005-0443-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136516", 
            "issn": [
              "1072-3374", 
              "1573-8795"
            ], 
            "name": "Journal of Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "131"
          }
        ], 
        "name": "\u03bb-Topologies on Function Spaces", 
        "pagination": "5701-5737", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c26b2bbafff9dd91adea2433a23589a43c4e332de14c5245b87e82193185a448"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10958-005-0443-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040813168"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10958-005-0443-1", 
          "https://app.dimensions.ai/details/publication/pub.1040813168"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10958-005-0443-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10958-005-0443-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10958-005-0443-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10958-005-0443-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10958-005-0443-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    93 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10958-005-0443-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4560fbd86c2c49979fc6c2a7ee821734
    4 schema:citation sg:pub.10.1007/978-3-662-25249-9
    5 sg:pub.10.1007/978-94-011-2598-7
    6 sg:pub.10.1007/bf02262860
    7 sg:pub.10.1007/bf02673897
    8 sg:pub.10.1007/bfb0079245
    9 https://doi.org/10.1016/s0166-8641(99)00089-9
    10 https://doi.org/10.1090/s0002-9947-1991-1065602-x
    11 https://doi.org/10.2307/2001884
    12 https://doi.org/10.2307/2372076
    13 schema:datePublished 2005-12
    14 schema:datePublishedReg 2005-12-01
    15 schema:description This paper is devoted to the spaces Cλ(X) of all continuous real-valued functions on X endowed with arbitrary λ-topologies. This is a fairly complete survey of the results obtained by the author in the following domains of the theory of λ-topologies: cardinal functions; locally convex properties; weak and strong topologies; dual spaces; lattices of λ-topologies; completeness.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N8fd80c3c65824dcda8a6053c3bb1ed14
    20 Nca4e8ab93be44f618c39b5aa6f4d5ee9
    21 sg:journal.1136516
    22 schema:name λ-Topologies on Function Spaces
    23 schema:pagination 5701-5737
    24 schema:productId N0d799601d1fa4e5f8b2a62442419a05d
    25 N80ce57c4c7da4fc7a5b404fac89128ba
    26 Nb8acfb0d87174da2b522b42a82d04cf3
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040813168
    28 https://doi.org/10.1007/s10958-005-0443-1
    29 schema:sdDatePublished 2019-04-11T12:26
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N7b3f0a787967448f8c6056598f1f5889
    32 schema:url http://link.springer.com/10.1007%2Fs10958-005-0443-1
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0d799601d1fa4e5f8b2a62442419a05d schema:name readcube_id
    37 schema:value c26b2bbafff9dd91adea2433a23589a43c4e332de14c5245b87e82193185a448
    38 rdf:type schema:PropertyValue
    39 N4560fbd86c2c49979fc6c2a7ee821734 rdf:first sg:person.07736604046.09
    40 rdf:rest rdf:nil
    41 N7b3f0a787967448f8c6056598f1f5889 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N80ce57c4c7da4fc7a5b404fac89128ba schema:name dimensions_id
    44 schema:value pub.1040813168
    45 rdf:type schema:PropertyValue
    46 N8fd80c3c65824dcda8a6053c3bb1ed14 schema:volumeNumber 131
    47 rdf:type schema:PublicationVolume
    48 Nb8acfb0d87174da2b522b42a82d04cf3 schema:name doi
    49 schema:value 10.1007/s10958-005-0443-1
    50 rdf:type schema:PropertyValue
    51 Nca4e8ab93be44f618c39b5aa6f4d5ee9 schema:issueNumber 4
    52 rdf:type schema:PublicationIssue
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Pure Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1136516 schema:issn 1072-3374
    60 1573-8795
    61 schema:name Journal of Mathematical Sciences
    62 rdf:type schema:Periodical
    63 sg:person.07736604046.09 schema:affiliation https://www.grid.ac/institutes/grid.465287.a
    64 schema:familyName Velichko
    65 schema:givenName N. V.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736604046.09
    67 rdf:type schema:Person
    68 sg:pub.10.1007/978-3-662-25249-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041135193
    69 https://doi.org/10.1007/978-3-662-25249-9
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/978-94-011-2598-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716953
    72 https://doi.org/10.1007/978-94-011-2598-7
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf02262860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008526840
    75 https://doi.org/10.1007/bf02262860
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf02673897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048088357
    78 https://doi.org/10.1007/bf02673897
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bfb0079245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001660928
    81 https://doi.org/10.1007/bfb0079245
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/s0166-8641(99)00089-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892808
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1090/s0002-9947-1991-1065602-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017145356
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.2307/2001884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069691287
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.2307/2372076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898773
    90 rdf:type schema:CreativeWork
    91 https://www.grid.ac/institutes/grid.465287.a schema:alternateName Institute of Mathematics and Mechanics
    92 schema:name Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, 16 ul. S. Kovalevskoj, 620066, Ekaterinburg, Russia
    93 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...