Convexity of Sets and Quadratic Functions on the Hyperbolic Space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-12

AUTHORS

Orizon P. Ferreira, Sándor Z. Németh, Jinzhen Zhu

ABSTRACT

In this paper, some concepts of convex analysis on hyperbolic spaces are studied. We first study properties of the intrinsic distance, for instance, we present the spectral decomposition of its Hessian. Next, we study the concept of convex sets and the intrinsic projection onto these sets. We also study the concept of convex functions and present first- and second-order characterizations of these functions, as well as some optimization concepts related to them. An extensive study of the hyperbolically convex quadratic functions is also presented. More... »

PAGES

1-35

References to SciGraph publications

  • 1991-04. Geodesic convexity in nonlinear optimization in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1936-12. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen in COMMENTARII MATHEMATICI HELVETICI
  • 2016-05-25. What Do ‘Convexities’ Imply on Hadamard Manifolds? in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2020-04-04. First Order Methods for Optimization on Riemannian Manifolds in HANDBOOK OF VARIATIONAL METHODS FOR NONLINEAR GEOMETRIC DATA
  • 2014-03-05. Concepts and techniques of optimization on the sphere in TOP
  • 1974-12. On the metric projection onto convex sets in riemannian spaces in ARCHIV DER MATHEMATIK
  • 2017-11-20. Machine learning meets complex networks via coalescent embedding in the hyperbolic space in NATURE COMMUNICATIONS
  • 2019. Foundations of Hyperbolic Manifolds in NONE
  • 2016-09-21. New Characterization of Geodesic Convexity on Hadamard Manifolds with Applications in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1984-02. Quasiconvex quadratic forms in two dimensions in APPLIED MATHEMATICS & OPTIMIZATION
  • 2018-10-01. On the spherical convexity of quadratic functions in JOURNAL OF GLOBAL OPTIMIZATION
  • 2011. Geometric Methods and Applications, For Computer Science and Engineering in NONE
  • 2016. Riemannian Geometry in NONE
  • 2021-02-26. The hyperbolic geometry of financial networks in SCIENTIFIC REPORTS
  • 1992. Lectures on Hyperbolic Geometry in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-022-02073-4

    DOI

    http://dx.doi.org/10.1007/s10957-022-02073-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149442511


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IME, Universidade Federal de Goi\u00e1s, 74001-970, Goi\u00e2nia, GO, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.411195.9", 
              "name": [
                "IME, Universidade Federal de Goi\u00e1s, 74001-970, Goi\u00e2nia, GO, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ferreira", 
            "givenName": "Orizon P.", 
            "id": "sg:person.012031236556.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031236556.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "N\u00e9meth", 
            "givenName": "S\u00e1ndor Z.", 
            "id": "sg:person.0577367647.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577367647.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Jinzhen", 
            "id": "sg:person.013142372744.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142372744.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10898-018-0710-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107345572", 
              "https://doi.org/10.1007/s10898-018-0710-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-31597-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122022478", 
              "https://doi.org/10.1007/978-3-030-31597-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-015-0780-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008264391", 
              "https://doi.org/10.1007/s10957-015-0780-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-016-1012-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002654955", 
              "https://doi.org/10.1007/s10957-016-1012-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-58158-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031402115", 
              "https://doi.org/10.1007/978-3-642-58158-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01442177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052654548", 
              "https://doi.org/10.1007/bf01442177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01825-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092696986", 
              "https://doi.org/10.1038/s41467-017-01825-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01258188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032968053", 
              "https://doi.org/10.1007/bf01258188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052954524", 
              "https://doi.org/10.1007/bf01238646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024769297", 
              "https://doi.org/10.1007/bf00940467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-83328-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135749666", 
              "https://doi.org/10.1038/s41598-021-83328-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11750-014-0322-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047222800", 
              "https://doi.org/10.1007/s11750-014-0322-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-31351-7_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126108358", 
              "https://doi.org/10.1007/978-3-030-31351-7_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-9961-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009776269", 
              "https://doi.org/10.1007/978-1-4419-9961-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-26654-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021406047", 
              "https://doi.org/10.1007/978-3-319-26654-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-12", 
        "datePublishedReg": "2022-07-12", 
        "description": "In this paper, some concepts of convex analysis on hyperbolic spaces are studied. We first study properties of the intrinsic distance, for instance, we present the spectral decomposition of its Hessian. Next, we study the concept of convex sets and the intrinsic projection onto these sets. We also study the concept of convex functions and present first- and second-order characterizations of these functions, as well as some optimization concepts related to them. An extensive study of the hyperbolically convex quadratic functions is also presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-022-02073-4", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "hyperbolic space", 
          "second-order characterization", 
          "convex quadratic function", 
          "quadratic function", 
          "convexity of sets", 
          "convex analysis", 
          "convex sets", 
          "convex functions", 
          "optimization concept", 
          "intrinsic distance", 
          "spectral decomposition", 
          "study properties", 
          "space", 
          "Hessian", 
          "set", 
          "convexity", 
          "function", 
          "concept", 
          "decomposition", 
          "extensive study", 
          "properties", 
          "projections", 
          "instances", 
          "distance", 
          "analysis", 
          "characterization", 
          "study", 
          "intrinsic projections", 
          "paper"
        ], 
        "name": "Convexity of Sets and Quadratic Functions on the Hyperbolic Space", 
        "pagination": "1-35", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149442511"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-022-02073-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-022-02073-4", 
          "https://app.dimensions.ai/details/publication/pub.1149442511"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_946.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-022-02073-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02073-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02073-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02073-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02073-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      66 URIs      43 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-022-02073-4 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N7d67d1ccd5af4b5f8fd7db6e830d15b1
    4 schema:citation sg:pub.10.1007/978-1-4419-9961-0
    5 sg:pub.10.1007/978-3-030-31351-7_18
    6 sg:pub.10.1007/978-3-030-31597-9
    7 sg:pub.10.1007/978-3-319-26654-1
    8 sg:pub.10.1007/978-3-642-58158-8
    9 sg:pub.10.1007/bf00940467
    10 sg:pub.10.1007/bf01238646
    11 sg:pub.10.1007/bf01258188
    12 sg:pub.10.1007/bf01442177
    13 sg:pub.10.1007/s10898-018-0710-6
    14 sg:pub.10.1007/s10957-015-0780-2
    15 sg:pub.10.1007/s10957-016-1012-0
    16 sg:pub.10.1007/s11750-014-0322-3
    17 sg:pub.10.1038/s41467-017-01825-5
    18 sg:pub.10.1038/s41598-021-83328-4
    19 schema:datePublished 2022-07-12
    20 schema:datePublishedReg 2022-07-12
    21 schema:description In this paper, some concepts of convex analysis on hyperbolic spaces are studied. We first study properties of the intrinsic distance, for instance, we present the spectral decomposition of its Hessian. Next, we study the concept of convex sets and the intrinsic projection onto these sets. We also study the concept of convex functions and present first- and second-order characterizations of these functions, as well as some optimization concepts related to them. An extensive study of the hyperbolically convex quadratic functions is also presented.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf sg:journal.1044187
    25 schema:keywords Hessian
    26 analysis
    27 characterization
    28 concept
    29 convex analysis
    30 convex functions
    31 convex quadratic function
    32 convex sets
    33 convexity
    34 convexity of sets
    35 decomposition
    36 distance
    37 extensive study
    38 function
    39 hyperbolic space
    40 instances
    41 intrinsic distance
    42 intrinsic projections
    43 optimization concept
    44 paper
    45 projections
    46 properties
    47 quadratic function
    48 second-order characterization
    49 set
    50 space
    51 spectral decomposition
    52 study
    53 study properties
    54 schema:name Convexity of Sets and Quadratic Functions on the Hyperbolic Space
    55 schema:pagination 1-35
    56 schema:productId N261fe80b8f7d4fa080184e78767de37f
    57 Nad8f2a71ef8e46638c77e34916cf5af5
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149442511
    59 https://doi.org/10.1007/s10957-022-02073-4
    60 schema:sdDatePublished 2022-09-02T16:07
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nf700cad2067c423b9a56eba43c419c52
    63 schema:url https://doi.org/10.1007/s10957-022-02073-4
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N261fe80b8f7d4fa080184e78767de37f schema:name doi
    68 schema:value 10.1007/s10957-022-02073-4
    69 rdf:type schema:PropertyValue
    70 N7d67d1ccd5af4b5f8fd7db6e830d15b1 rdf:first sg:person.012031236556.02
    71 rdf:rest Nfd710f6956ef4082b89a3b2a291d3da5
    72 Nad8f2a71ef8e46638c77e34916cf5af5 schema:name dimensions_id
    73 schema:value pub.1149442511
    74 rdf:type schema:PropertyValue
    75 Nb3d49c75206d4077900b1f4ba80742fc rdf:first sg:person.013142372744.13
    76 rdf:rest rdf:nil
    77 Nf700cad2067c423b9a56eba43c419c52 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 Nfd710f6956ef4082b89a3b2a291d3da5 rdf:first sg:person.0577367647.29
    80 rdf:rest Nb3d49c75206d4077900b1f4ba80742fc
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Numerical and Computational Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1044187 schema:issn 0022-3239
    88 1573-2878
    89 schema:name Journal of Optimization Theory and Applications
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.012031236556.02 schema:affiliation grid-institutes:grid.411195.9
    93 schema:familyName Ferreira
    94 schema:givenName Orizon P.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012031236556.02
    96 rdf:type schema:Person
    97 sg:person.013142372744.13 schema:affiliation grid-institutes:grid.6572.6
    98 schema:familyName Zhu
    99 schema:givenName Jinzhen
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142372744.13
    101 rdf:type schema:Person
    102 sg:person.0577367647.29 schema:affiliation grid-institutes:grid.6572.6
    103 schema:familyName Németh
    104 schema:givenName Sándor Z.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577367647.29
    106 rdf:type schema:Person
    107 sg:pub.10.1007/978-1-4419-9961-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009776269
    108 https://doi.org/10.1007/978-1-4419-9961-0
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-030-31351-7_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126108358
    111 https://doi.org/10.1007/978-3-030-31351-7_18
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-030-31597-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122022478
    114 https://doi.org/10.1007/978-3-030-31597-9
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-319-26654-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021406047
    117 https://doi.org/10.1007/978-3-319-26654-1
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-642-58158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031402115
    120 https://doi.org/10.1007/978-3-642-58158-8
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf00940467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024769297
    123 https://doi.org/10.1007/bf00940467
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01238646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052954524
    126 https://doi.org/10.1007/bf01238646
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01258188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032968053
    129 https://doi.org/10.1007/bf01258188
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01442177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052654548
    132 https://doi.org/10.1007/bf01442177
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10898-018-0710-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107345572
    135 https://doi.org/10.1007/s10898-018-0710-6
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10957-015-0780-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008264391
    138 https://doi.org/10.1007/s10957-015-0780-2
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10957-016-1012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002654955
    141 https://doi.org/10.1007/s10957-016-1012-0
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11750-014-0322-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047222800
    144 https://doi.org/10.1007/s11750-014-0322-3
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/s41467-017-01825-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092696986
    147 https://doi.org/10.1038/s41467-017-01825-5
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/s41598-021-83328-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135749666
    150 https://doi.org/10.1038/s41598-021-83328-4
    151 rdf:type schema:CreativeWork
    152 grid-institutes:grid.411195.9 schema:alternateName IME, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
    153 schema:name IME, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
    154 rdf:type schema:Organization
    155 grid-institutes:grid.6572.6 schema:alternateName School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK
    156 schema:name School of Mathematics, University of Birmingham, Watson Building, B15 2TT, Edgbaston, Birmingham, UK
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...