Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-05

AUTHORS

Fedor Stonyakin, Alexander Gasnikov, Pavel Dvurechensky, Alexander Titov, Mohammad Alkousa

ABSTRACT

We introduce an inexact oracle model for variational inequalities with monotone operators, propose a numerical method that solves such variational inequalities, and analyze its convergence rate. As a particular case, we consider variational inequalities with Hölder-continuous operator and show that our algorithm is universal. This means that, without knowing the Hölder exponent and Hölder constant, the algorithm has the least possible in the worst-case sense complexity for this class of variational inequalities. We also consider the case of variational inequalities with a strongly monotone operator and generalize the algorithm for variational inequalities with inexact oracle and our universal method for this class of problems. Finally, we show how our method can be applied to convex–concave saddle point problems with Hölder-continuous partial subgradients. More... »

PAGES

988-1013

References to SciGraph publications

  • 2006-09-19. Dual extrapolation and its applications to solving variational inequalities and related problems in MATHEMATICAL PROGRAMMING
  • 2019-03. Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems in DOKLADY MATHEMATICS
  • 2019-11-21. Implementable tensor methods in unconstrained convex optimization in MATHEMATICAL PROGRAMMING
  • 2020-10-02. Adversarial Dataset Augmentation Using Reinforcement Learning and 3D Modeling in ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH IV
  • 2005-02-09. Interior projection-like methods for monotone variational inequalities in MATHEMATICAL PROGRAMMING
  • 2018-01. Universal Method for Stochastic Composite Optimization Problems in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2021-06-07. On lower iteration complexity bounds for the convex concave saddle point problems in MATHEMATICAL PROGRAMMING
  • 2015-06-24. Primal-Dual Methods for Solving Infinite-Dimensional Games in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2014-02. Algorithms for computing Minkowski operators and their application in differential games in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2014-05-28. Universal gradient methods for convex optimization problems in MATHEMATICAL PROGRAMMING
  • 2014-06-24. On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • 2020-11. Accelerated Methods for Saddle-Point Problem in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2022-02-05. Stochastic saddle-point optimization for the Wasserstein barycenter problem in OPTIMIZATION LETTERS
  • 1999-12. A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator in SET-VALUED AND VARIATIONAL ANALYSIS
  • 2016-08-23. Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1998. On Minty Variational Principle in NEW TRENDS IN MATHEMATICAL PROGRAMMING
  • 1990-03. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications in MATHEMATICAL PROGRAMMING
  • 2021-01. Accelerated Meta-Algorithm for Convex Optimization Problems in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2016-03. Stochastic intermediate gradient method for convex optimization problems in DOKLADY MATHEMATICS
  • 2019-06-12. Gradient Methods for Problems with Inexact Model of the Objective in MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH
  • 2019-05. An Adaptive Proximal Method for Variational Inequalities in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2019-02-14. Generalized Uniformly Optimal Methods for Nonlinear Programming in JOURNAL OF SCIENTIFIC COMPUTING
  • 2013-02-12. Modified projection method for strongly pseudomonotone variational inequalities in JOURNAL OF GLOBAL OPTIMIZATION
  • 2019-08-07. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems in MATHEMATICAL PROGRAMMING
  • 2021-09-21. Algorithms for Solving Variational Inequalities and Saddle Point Problems with Some Generalizations of Lipschitz Property for Operators in MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH: RECENT TRENDS
  • 2018-11-12. Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints in LARGE-SCALE AND DISTRIBUTED OPTIMIZATION
  • 2021-09-21. Zeroth-Order Algorithms for Smooth Saddle-Point Problems in MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH: RECENT TRENDS
  • 2021-09-21. Solving Smooth Min-Min and Min-Max Problems by Mixed Oracle Algorithms in MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH: RECENT TRENDS
  • 2013-06-14. First-order methods of smooth convex optimization with inexact oracle in MATHEMATICAL PROGRAMMING
  • 2019-01. Universal Method of Searching for Equilibria and Stochastic Equilibria in Transportation Networks in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2021-04-29. Zeroth-order methods for noisy Hölder-gradient functions in OPTIMIZATION LETTERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-022-02062-7

    DOI

    http://dx.doi.org/10.1007/s10957-022-02062-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149242976


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "V.I. Vernadsky Crimean Federal University, Simferopol, Russia", 
                "Moscow Institute of Physics and Technology, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stonyakin", 
            "givenName": "Fedor", 
            "id": "sg:person.014223706465.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223706465.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HSE University, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.410682.9", 
              "name": [
                "Moscow Institute of Physics and Technology, Moscow, Russia", 
                "Institute for Information Transmission Problems, Moscow, Russia", 
                "HSE University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gasnikov", 
            "givenName": "Alexander", 
            "id": "sg:person.011522165267.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522165267.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.433806.a", 
              "name": [
                "Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dvurechensky", 
            "givenName": "Pavel", 
            "id": "sg:person.015764062177.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764062177.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HSE University, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.410682.9", 
              "name": [
                "Moscow Institute of Physics and Technology, Moscow, Russia", 
                "HSE University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Titov", 
            "givenName": "Alexander", 
            "id": "sg:person.015562376467.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562376467.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HSE University, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.410682.9", 
              "name": [
                "Moscow Institute of Physics and Technology, Moscow, Russia", 
                "HSE University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alkousa", 
            "givenName": "Mohammad", 
            "id": "sg:person.013740315637.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740315637.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-97478-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109852634", 
              "https://doi.org/10.1007/978-3-319-97478-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542514020055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053334043", 
              "https://doi.org/10.1134/s0965542514020055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11590-021-01834-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1145300922", 
              "https://doi.org/10.1007/s11590-021-01834-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542519010020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114231934", 
              "https://doi.org/10.1134/s0965542519010020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-013-0677-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009899502", 
              "https://doi.org/10.1007/s10107-013-0677-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-019-01420-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120197358", 
              "https://doi.org/10.1007/s10107-019-01420-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2878-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032531654", 
              "https://doi.org/10.1007/978-1-4757-2878-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008777829180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047039006", 
              "https://doi.org/10.1023/a:1008777829180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11590-021-01742-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137614140", 
              "https://doi.org/10.1007/s11590-021-01742-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-004-0568-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009417425", 
              "https://doi.org/10.1007/s10107-004-0568-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064562419020042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117347202", 
              "https://doi.org/10.1134/s1064562419020042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-016-0999-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050840202", 
              "https://doi.org/10.1007/s10957-016-0999-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s096554252101005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135842993", 
              "https://doi.org/10.1134/s096554252101005x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-014-0790-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033725390", 
              "https://doi.org/10.1007/s10107-014-0790-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-86433-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141238822", 
              "https://doi.org/10.1007/978-3-030-86433-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542520110020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133342123", 
              "https://doi.org/10.1134/s0965542520110020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-22629-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117044098", 
              "https://doi.org/10.1007/978-3-030-22629-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-021-01660-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138661605", 
              "https://doi.org/10.1007/s10107-021-01660-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-013-0042-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027898009", 
              "https://doi.org/10.1007/s10898-013-0042-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-006-0034-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042069345", 
              "https://doi.org/10.1007/s10107-006-0034-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542519050075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117347190", 
              "https://doi.org/10.1134/s0965542519050075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064562416020071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031533891", 
              "https://doi.org/10.1134/s1064562416020071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-014-9673-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037830048", 
              "https://doi.org/10.1007/s10589-014-9673-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542518010050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101303187", 
              "https://doi.org/10.1134/s0965542518010050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-86433-0_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141238823", 
              "https://doi.org/10.1007/978-3-030-86433-0_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01582255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032689642", 
              "https://doi.org/10.1007/bf01582255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-019-01449-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122752965", 
              "https://doi.org/10.1007/s10107-019-01449-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-019-00915-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112141734", 
              "https://doi.org/10.1007/s10915-019-00915-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-015-0771-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029883080", 
              "https://doi.org/10.1007/s10957-015-0771-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-86433-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141238804", 
              "https://doi.org/10.1007/978-3-030-86433-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-60577-3_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131367632", 
              "https://doi.org/10.1007/978-3-030-60577-3_38"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-05", 
        "datePublishedReg": "2022-07-05", 
        "description": "We introduce an inexact oracle model for variational inequalities with monotone operators, propose a numerical method that solves such variational inequalities, and analyze its convergence rate. As a particular case, we consider variational inequalities with H\u00f6lder-continuous operator and show that our algorithm is universal. This means that, without knowing the H\u00f6lder exponent and H\u00f6lder constant, the algorithm has the least possible in the worst-case sense complexity for this class of variational inequalities. We also consider the case of variational inequalities with a strongly monotone operator and generalize the algorithm for variational inequalities with inexact oracle and our universal method for this class of problems. Finally, we show how our method can be applied to convex\u2013concave saddle point problems with H\u00f6lder-continuous partial subgradients.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-022-02062-7", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8412095", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "194"
          }
        ], 
        "keywords": [
          "variational inequalities", 
          "inexact oracle", 
          "monotone operators", 
          "convex-concave saddle point problems", 
          "saddle point problems", 
          "such variational inequalities", 
          "class of problems", 
          "monotone variational inequalities", 
          "point problem", 
          "H\u00f6lder constant", 
          "convergence rate", 
          "numerical method", 
          "H\u00f6lder exponent", 
          "particular case", 
          "operators", 
          "inequality", 
          "algorithm", 
          "subgradients", 
          "oracle model", 
          "universal method", 
          "problem", 
          "class", 
          "exponent", 
          "oracle", 
          "universality", 
          "complexity", 
          "model", 
          "cases", 
          "constants", 
          "rate", 
          "method"
        ], 
        "name": "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle", 
        "pagination": "988-1013", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149242976"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-022-02062-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-022-02062-7", 
          "https://app.dimensions.ai/details/publication/pub.1149242976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_933.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-022-02062-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02062-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02062-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02062-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02062-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      21 PREDICATES      86 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-022-02062-7 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Neb07bcbcae1e48828fdb697f22fb2c8c
    4 schema:citation sg:pub.10.1007/978-1-4757-2878-1_8
    5 sg:pub.10.1007/978-3-030-22629-9_8
    6 sg:pub.10.1007/978-3-030-60577-3_38
    7 sg:pub.10.1007/978-3-030-86433-0_2
    8 sg:pub.10.1007/978-3-030-86433-0_5
    9 sg:pub.10.1007/978-3-030-86433-0_6
    10 sg:pub.10.1007/978-3-319-97478-1_8
    11 sg:pub.10.1007/bf01582255
    12 sg:pub.10.1007/s10107-004-0568-x
    13 sg:pub.10.1007/s10107-006-0034-z
    14 sg:pub.10.1007/s10107-013-0677-5
    15 sg:pub.10.1007/s10107-014-0790-0
    16 sg:pub.10.1007/s10107-019-01420-0
    17 sg:pub.10.1007/s10107-019-01449-1
    18 sg:pub.10.1007/s10107-021-01660-z
    19 sg:pub.10.1007/s10589-014-9673-9
    20 sg:pub.10.1007/s10898-013-0042-5
    21 sg:pub.10.1007/s10915-019-00915-4
    22 sg:pub.10.1007/s10957-015-0771-3
    23 sg:pub.10.1007/s10957-016-0999-6
    24 sg:pub.10.1007/s11590-021-01742-z
    25 sg:pub.10.1007/s11590-021-01834-w
    26 sg:pub.10.1023/a:1008777829180
    27 sg:pub.10.1134/s0965542514020055
    28 sg:pub.10.1134/s0965542518010050
    29 sg:pub.10.1134/s0965542519010020
    30 sg:pub.10.1134/s0965542519050075
    31 sg:pub.10.1134/s0965542520110020
    32 sg:pub.10.1134/s096554252101005x
    33 sg:pub.10.1134/s1064562416020071
    34 sg:pub.10.1134/s1064562419020042
    35 schema:datePublished 2022-07-05
    36 schema:datePublishedReg 2022-07-05
    37 schema:description We introduce an inexact oracle model for variational inequalities with monotone operators, propose a numerical method that solves such variational inequalities, and analyze its convergence rate. As a particular case, we consider variational inequalities with Hölder-continuous operator and show that our algorithm is universal. This means that, without knowing the Hölder exponent and Hölder constant, the algorithm has the least possible in the worst-case sense complexity for this class of variational inequalities. We also consider the case of variational inequalities with a strongly monotone operator and generalize the algorithm for variational inequalities with inexact oracle and our universal method for this class of problems. Finally, we show how our method can be applied to convex–concave saddle point problems with Hölder-continuous partial subgradients.
    38 schema:genre article
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N16655ec6ea1840068b62008919076fd7
    41 Nc608784d1b414755a03055d2f88644f1
    42 sg:journal.1044187
    43 schema:keywords Hölder constant
    44 Hölder exponent
    45 algorithm
    46 cases
    47 class
    48 class of problems
    49 complexity
    50 constants
    51 convergence rate
    52 convex-concave saddle point problems
    53 exponent
    54 inequality
    55 inexact oracle
    56 method
    57 model
    58 monotone operators
    59 monotone variational inequalities
    60 numerical method
    61 operators
    62 oracle
    63 oracle model
    64 particular case
    65 point problem
    66 problem
    67 rate
    68 saddle point problems
    69 subgradients
    70 such variational inequalities
    71 universal method
    72 universality
    73 variational inequalities
    74 schema:name Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle
    75 schema:pagination 988-1013
    76 schema:productId N03cb3b2f92274fc7b524cf8e933acce8
    77 N66d7c4ddd59c4a039a79879bbf3b17eb
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149242976
    79 https://doi.org/10.1007/s10957-022-02062-7
    80 schema:sdDatePublished 2022-09-02T16:07
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher Ne6177bef56844be39970aa73ab84346f
    83 schema:url https://doi.org/10.1007/s10957-022-02062-7
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N03cb3b2f92274fc7b524cf8e933acce8 schema:name doi
    88 schema:value 10.1007/s10957-022-02062-7
    89 rdf:type schema:PropertyValue
    90 N16655ec6ea1840068b62008919076fd7 schema:issueNumber 3
    91 rdf:type schema:PublicationIssue
    92 N4cd96789170c422499060ff6bd963121 rdf:first sg:person.015764062177.98
    93 rdf:rest Nb6b9254383e74fe0b549f0e2b4fa7d7c
    94 N66d7c4ddd59c4a039a79879bbf3b17eb schema:name dimensions_id
    95 schema:value pub.1149242976
    96 rdf:type schema:PropertyValue
    97 N7fdba021be1444319a86531f1a5af441 rdf:first sg:person.013740315637.08
    98 rdf:rest rdf:nil
    99 N9358f107fc9d4b5b8c8c9f1156c43fe0 rdf:first sg:person.011522165267.78
    100 rdf:rest N4cd96789170c422499060ff6bd963121
    101 Nb6b9254383e74fe0b549f0e2b4fa7d7c rdf:first sg:person.015562376467.40
    102 rdf:rest N7fdba021be1444319a86531f1a5af441
    103 Nc608784d1b414755a03055d2f88644f1 schema:volumeNumber 194
    104 rdf:type schema:PublicationVolume
    105 Ne6177bef56844be39970aa73ab84346f schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Neb07bcbcae1e48828fdb697f22fb2c8c rdf:first sg:person.014223706465.84
    108 rdf:rest N9358f107fc9d4b5b8c8c9f1156c43fe0
    109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Mathematical Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Numerical and Computational Mathematics
    114 rdf:type schema:DefinedTerm
    115 sg:grant.8412095 http://pending.schema.org/fundedItem sg:pub.10.1007/s10957-022-02062-7
    116 rdf:type schema:MonetaryGrant
    117 sg:journal.1044187 schema:issn 0022-3239
    118 1573-2878
    119 schema:name Journal of Optimization Theory and Applications
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.011522165267.78 schema:affiliation grid-institutes:grid.410682.9
    123 schema:familyName Gasnikov
    124 schema:givenName Alexander
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522165267.78
    126 rdf:type schema:Person
    127 sg:person.013740315637.08 schema:affiliation grid-institutes:grid.410682.9
    128 schema:familyName Alkousa
    129 schema:givenName Mohammad
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740315637.08
    131 rdf:type schema:Person
    132 sg:person.014223706465.84 schema:affiliation grid-institutes:grid.18763.3b
    133 schema:familyName Stonyakin
    134 schema:givenName Fedor
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223706465.84
    136 rdf:type schema:Person
    137 sg:person.015562376467.40 schema:affiliation grid-institutes:grid.410682.9
    138 schema:familyName Titov
    139 schema:givenName Alexander
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562376467.40
    141 rdf:type schema:Person
    142 sg:person.015764062177.98 schema:affiliation grid-institutes:grid.433806.a
    143 schema:familyName Dvurechensky
    144 schema:givenName Pavel
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015764062177.98
    146 rdf:type schema:Person
    147 sg:pub.10.1007/978-1-4757-2878-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032531654
    148 https://doi.org/10.1007/978-1-4757-2878-1_8
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-030-22629-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117044098
    151 https://doi.org/10.1007/978-3-030-22629-9_8
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-030-60577-3_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131367632
    154 https://doi.org/10.1007/978-3-030-60577-3_38
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-030-86433-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141238804
    157 https://doi.org/10.1007/978-3-030-86433-0_2
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-030-86433-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141238822
    160 https://doi.org/10.1007/978-3-030-86433-0_5
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/978-3-030-86433-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141238823
    163 https://doi.org/10.1007/978-3-030-86433-0_6
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-3-319-97478-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109852634
    166 https://doi.org/10.1007/978-3-319-97478-1_8
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf01582255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032689642
    169 https://doi.org/10.1007/bf01582255
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s10107-004-0568-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009417425
    172 https://doi.org/10.1007/s10107-004-0568-x
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10107-006-0034-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042069345
    175 https://doi.org/10.1007/s10107-006-0034-z
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10107-013-0677-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009899502
    178 https://doi.org/10.1007/s10107-013-0677-5
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s10107-014-0790-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033725390
    181 https://doi.org/10.1007/s10107-014-0790-0
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s10107-019-01420-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120197358
    184 https://doi.org/10.1007/s10107-019-01420-0
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s10107-019-01449-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122752965
    187 https://doi.org/10.1007/s10107-019-01449-1
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s10107-021-01660-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1138661605
    190 https://doi.org/10.1007/s10107-021-01660-z
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10589-014-9673-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037830048
    193 https://doi.org/10.1007/s10589-014-9673-9
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10898-013-0042-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027898009
    196 https://doi.org/10.1007/s10898-013-0042-5
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10915-019-00915-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141734
    199 https://doi.org/10.1007/s10915-019-00915-4
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10957-015-0771-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029883080
    202 https://doi.org/10.1007/s10957-015-0771-3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10957-016-0999-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050840202
    205 https://doi.org/10.1007/s10957-016-0999-6
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11590-021-01742-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1137614140
    208 https://doi.org/10.1007/s11590-021-01742-z
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11590-021-01834-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1145300922
    211 https://doi.org/10.1007/s11590-021-01834-w
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1023/a:1008777829180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047039006
    214 https://doi.org/10.1023/a:1008777829180
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1134/s0965542514020055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053334043
    217 https://doi.org/10.1134/s0965542514020055
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1134/s0965542518010050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303187
    220 https://doi.org/10.1134/s0965542518010050
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1134/s0965542519010020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114231934
    223 https://doi.org/10.1134/s0965542519010020
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1134/s0965542519050075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117347190
    226 https://doi.org/10.1134/s0965542519050075
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1134/s0965542520110020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133342123
    229 https://doi.org/10.1134/s0965542520110020
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1134/s096554252101005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1135842993
    232 https://doi.org/10.1134/s096554252101005x
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1134/s1064562416020071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533891
    235 https://doi.org/10.1134/s1064562416020071
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1134/s1064562419020042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117347202
    238 https://doi.org/10.1134/s1064562419020042
    239 rdf:type schema:CreativeWork
    240 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology, Moscow, Russia
    241 schema:name Moscow Institute of Physics and Technology, Moscow, Russia
    242 V.I. Vernadsky Crimean Federal University, Simferopol, Russia
    243 rdf:type schema:Organization
    244 grid-institutes:grid.410682.9 schema:alternateName HSE University, Moscow, Russia
    245 schema:name HSE University, Moscow, Russia
    246 Institute for Information Transmission Problems, Moscow, Russia
    247 Moscow Institute of Physics and Technology, Moscow, Russia
    248 rdf:type schema:Organization
    249 grid-institutes:grid.433806.a schema:alternateName Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
    250 schema:name Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...