Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-13

AUTHORS

Adil Salim, Laurent Condat, Konstantin Mishchenko, Peter Richtárik

ABSTRACT

We consider minimizing the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable and the third one is the composition of a nonsmooth proximable function with a linear operator L. This template problem has many applications, for instance, in image processing and machine learning. First, we propose a new primal–dual algorithm, which we call PDDY, for this problem. It is constructed by applying Davis–Yin splitting to a monotone inclusion in a primal–dual product space, where the operators are monotone under a specific metric depending on L. We show that three existing algorithms (the two forms of the Condat–Vũ algorithm and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing link in this self-consistent class of primal–dual algorithms. This representation eases the convergence analysis: it allows us to derive sublinear convergence rates in general, and linear convergence results in presence of strong convexity. Moreover, within our broad and flexible analysis framework, we propose new stochastic generalizations of the algorithms, in which a variance-reduced random estimate of the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging algorithm for the minimization of a strongly convex function F under a linear constraint; we discuss its important application to decentralized optimization. More... »

PAGES

102-130

References to SciGraph publications

  • 2017-06-14. A Three-Operator Splitting Scheme and its Optimization Applications in SET-VALUED AND VARIATIONAL ANALYSIS
  • 2018-03-02. A New Primal–Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator in JOURNAL OF SCIENTIFIC COMPUTING
  • 2011-05-09. Proximal Splitting Methods in Signal Processing in FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING
  • 2020-09-30. Projective splitting with forward steps in MATHEMATICAL PROGRAMMING
  • 2014-08-06. Recent Developments on Primal–Dual Splitting Methods with Applications to Convex Minimization in MATHEMATICS WITHOUT BOUNDARIES
  • 2018-08-16. On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting in MATHEMATICAL PROGRAMMING
  • 2015-03-25. Coordinate descent algorithms in MATHEMATICAL PROGRAMMING
  • 2020-11-09. Single-forward-step projective splitting: exploiting cocoercivity in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • 2019-05-22. Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator resolvent-splitting in MATHEMATICAL PROGRAMMING
  • 2011-11-29. A splitting algorithm for dual monotone inclusions involving cocoercive operators in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 2007-01-05. A family of projective splitting methods for the sum of two maximal monotone operators in MATHEMATICAL PROGRAMMING
  • 2010-12-21. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2020. First-order and Stochastic Optimization Methods for Machine Learning in NONE
  • 2011-08-27. Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators in SET-VALUED AND VARIATIONAL ANALYSIS
  • 2015-10-30. On the ergodic convergence rates of a first-order primal–dual algorithm in MATHEMATICAL PROGRAMMING
  • 2018. Lectures on Convex Optimization in NONE
  • 2016-07-05. Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions in MATHEMATICAL PROGRAMMING
  • 1992-04. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators in MATHEMATICAL PROGRAMMING
  • 2012-12-29. A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2017. Convex Analysis and Monotone Operator Theory in Hilbert Spaces in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-022-02061-8

    DOI

    http://dx.doi.org/10.1007/s10957-022-02061-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149442510


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salim", 
            "givenName": "Adil", 
            "id": "sg:person.07715126012.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715126012.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Condat", 
            "givenName": "Laurent", 
            "id": "sg:person.01014365475.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014365475.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mishchenko", 
            "givenName": "Konstantin", 
            "id": "sg:person.016025561605.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025561605.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.45672.32", 
              "name": [
                "Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Richt\u00e1rik", 
            "givenName": "Peter", 
            "id": "sg:person.016427176172.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427176172.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10107-015-0957-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012909932", 
              "https://doi.org/10.1007/s10107-015-0957-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-39568-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127627565", 
              "https://doi.org/10.1007/978-3-030-39568-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-020-01565-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131335764", 
              "https://doi.org/10.1007/s10107-020-01565-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01581204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022153870", 
              "https://doi.org/10.1007/bf01581204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-012-0245-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027180321", 
              "https://doi.org/10.1007/s10957-012-0245-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-019-01403-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115172565", 
              "https://doi.org/10.1007/s10107-019-01403-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-011-9254-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017372143", 
              "https://doi.org/10.1007/s10444-011-9254-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11228-011-0191-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037327416", 
              "https://doi.org/10.1007/s11228-011-0191-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-9569-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052700561", 
              "https://doi.org/10.1007/978-1-4419-9569-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11228-017-0421-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086031536", 
              "https://doi.org/10.1007/s11228-017-0421-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-020-00238-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132459987", 
              "https://doi.org/10.1007/s10589-020-00238-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-48311-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084688822", 
              "https://doi.org/10.1007/978-3-319-48311-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1124-0_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037691419", 
              "https://doi.org/10.1007/978-1-4939-1124-0_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-91578-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110040882", 
              "https://doi.org/10.1007/978-3-319-91578-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-010-0251-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010318529", 
              "https://doi.org/10.1007/s10851-010-0251-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-015-0892-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019991396", 
              "https://doi.org/10.1007/s10107-015-0892-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-018-1321-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106172667", 
              "https://doi.org/10.1007/s10107-018-1321-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-018-0680-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101322880", 
              "https://doi.org/10.1007/s10915-018-0680-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-006-0070-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021274319", 
              "https://doi.org/10.1007/s10107-006-0070-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-016-1044-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036311274", 
              "https://doi.org/10.1007/s10107-016-1044-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-13", 
        "datePublishedReg": "2022-07-13", 
        "description": "We consider minimizing the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable and the third one is the composition of a nonsmooth proximable function with a linear operator L. This template problem has many applications, for instance, in image processing and machine learning. First, we propose a new primal\u2013dual algorithm, which we call PDDY, for this problem. It is constructed by applying Davis\u2013Yin splitting to a monotone inclusion in a primal\u2013dual product space, where the operators are monotone under a specific metric depending on L. We show that three existing algorithms (the two forms of the Condat\u2013V\u0169 algorithm and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing link in this self-consistent class of primal\u2013dual algorithms. This representation eases the convergence analysis: it allows us to derive sublinear convergence rates in general, and linear convergence results in presence of strong convexity. Moreover, within our broad and flexible analysis framework, we propose new stochastic generalizations of the algorithms, in which a variance-reduced random estimate of the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging algorithm for the minimization of a strongly convex function F under a linear constraint; we discuss its important application to decentralized optimization.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-022-02061-8", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "195"
          }
        ], 
        "keywords": [
          "primal-dual algorithm", 
          "linear convergence results", 
          "nonsmooth optimization algorithm", 
          "sublinear convergence rate", 
          "new primal-dual algorithm", 
          "convex function f", 
          "stochastic generalization", 
          "convergence analysis", 
          "monotone inclusions", 
          "convergence results", 
          "strong convexity", 
          "linear constraints", 
          "decentralized optimization", 
          "true gradient", 
          "convex functions", 
          "operator L.", 
          "convergence rate", 
          "product space", 
          "flexible analysis framework", 
          "optimization algorithm", 
          "random estimates", 
          "special case", 
          "function f", 
          "template problem", 
          "important applications", 
          "algorithm", 
          "second one", 
          "metric depending", 
          "same structure", 
          "machine learning", 
          "problem", 
          "analysis framework", 
          "third one", 
          "operators", 
          "generalization", 
          "convexity", 
          "minimization", 
          "optimization", 
          "space", 
          "constraints", 
          "image processing", 
          "sum", 
          "applications", 
          "function", 
          "gradient", 
          "class", 
          "one", 
          "representation", 
          "estimates", 
          "splitting", 
          "framework", 
          "instances", 
          "structure", 
          "depending", 
          "cases", 
          "results", 
          "link", 
          "split", 
          "analysis", 
          "processing", 
          "inclusion", 
          "missing link", 
          "learning", 
          "presence", 
          "rate", 
          "composition", 
          "L."
        ], 
        "name": "Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms", 
        "pagination": "102-130", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149442510"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-022-02061-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-022-02061-8", 
          "https://app.dimensions.ai/details/publication/pub.1149442510"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_920.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-022-02061-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02061-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02061-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02061-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02061-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      111 URIs      83 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-022-02061-8 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N4d5374175d454a499471a10026457d7e
    4 schema:citation sg:pub.10.1007/978-1-4419-9569-8_10
    5 sg:pub.10.1007/978-1-4939-1124-0_3
    6 sg:pub.10.1007/978-3-030-39568-1
    7 sg:pub.10.1007/978-3-319-48311-5
    8 sg:pub.10.1007/978-3-319-91578-4
    9 sg:pub.10.1007/bf01581204
    10 sg:pub.10.1007/s10107-006-0070-8
    11 sg:pub.10.1007/s10107-015-0892-3
    12 sg:pub.10.1007/s10107-015-0957-3
    13 sg:pub.10.1007/s10107-016-1044-0
    14 sg:pub.10.1007/s10107-018-1321-1
    15 sg:pub.10.1007/s10107-019-01403-1
    16 sg:pub.10.1007/s10107-020-01565-3
    17 sg:pub.10.1007/s10444-011-9254-8
    18 sg:pub.10.1007/s10589-020-00238-3
    19 sg:pub.10.1007/s10851-010-0251-1
    20 sg:pub.10.1007/s10915-018-0680-3
    21 sg:pub.10.1007/s10957-012-0245-9
    22 sg:pub.10.1007/s11228-011-0191-y
    23 sg:pub.10.1007/s11228-017-0421-z
    24 schema:datePublished 2022-07-13
    25 schema:datePublishedReg 2022-07-13
    26 schema:description We consider minimizing the sum of three convex functions, where the first one F is smooth, the second one is nonsmooth and proximable and the third one is the composition of a nonsmooth proximable function with a linear operator L. This template problem has many applications, for instance, in image processing and machine learning. First, we propose a new primal–dual algorithm, which we call PDDY, for this problem. It is constructed by applying Davis–Yin splitting to a monotone inclusion in a primal–dual product space, where the operators are monotone under a specific metric depending on L. We show that three existing algorithms (the two forms of the Condat–Vũ algorithm and the PD3O algorithm) have the same structure, so that PDDY is the fourth missing link in this self-consistent class of primal–dual algorithms. This representation eases the convergence analysis: it allows us to derive sublinear convergence rates in general, and linear convergence results in presence of strong convexity. Moreover, within our broad and flexible analysis framework, we propose new stochastic generalizations of the algorithms, in which a variance-reduced random estimate of the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a special case of PDDY, a linearly converging algorithm for the minimization of a strongly convex function F under a linear constraint; we discuss its important application to decentralized optimization.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N314d4196666b490582e33551accce69f
    30 N4c65c1721f594212b1a463be61825865
    31 sg:journal.1044187
    32 schema:keywords L.
    33 algorithm
    34 analysis
    35 analysis framework
    36 applications
    37 cases
    38 class
    39 composition
    40 constraints
    41 convergence analysis
    42 convergence rate
    43 convergence results
    44 convex function f
    45 convex functions
    46 convexity
    47 decentralized optimization
    48 depending
    49 estimates
    50 flexible analysis framework
    51 framework
    52 function
    53 function f
    54 generalization
    55 gradient
    56 image processing
    57 important applications
    58 inclusion
    59 instances
    60 learning
    61 linear constraints
    62 linear convergence results
    63 link
    64 machine learning
    65 metric depending
    66 minimization
    67 missing link
    68 monotone inclusions
    69 new primal-dual algorithm
    70 nonsmooth optimization algorithm
    71 one
    72 operator L.
    73 operators
    74 optimization
    75 optimization algorithm
    76 presence
    77 primal-dual algorithm
    78 problem
    79 processing
    80 product space
    81 random estimates
    82 rate
    83 representation
    84 results
    85 same structure
    86 second one
    87 space
    88 special case
    89 split
    90 splitting
    91 stochastic generalization
    92 strong convexity
    93 structure
    94 sublinear convergence rate
    95 sum
    96 template problem
    97 third one
    98 true gradient
    99 schema:name Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms
    100 schema:pagination 102-130
    101 schema:productId N2486a27846e2417b84750e9408c9ddc5
    102 N27b161b55de4418c84194d213f0a5070
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149442510
    104 https://doi.org/10.1007/s10957-022-02061-8
    105 schema:sdDatePublished 2022-12-01T06:44
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher N6cab1f7d585e40108d20498822241486
    108 schema:url https://doi.org/10.1007/s10957-022-02061-8
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N2486a27846e2417b84750e9408c9ddc5 schema:name dimensions_id
    113 schema:value pub.1149442510
    114 rdf:type schema:PropertyValue
    115 N27b161b55de4418c84194d213f0a5070 schema:name doi
    116 schema:value 10.1007/s10957-022-02061-8
    117 rdf:type schema:PropertyValue
    118 N314d4196666b490582e33551accce69f schema:volumeNumber 195
    119 rdf:type schema:PublicationVolume
    120 N4c65c1721f594212b1a463be61825865 schema:issueNumber 1
    121 rdf:type schema:PublicationIssue
    122 N4d5374175d454a499471a10026457d7e rdf:first sg:person.07715126012.51
    123 rdf:rest Na7cd067e194946498166ba4b811509a8
    124 N6cab1f7d585e40108d20498822241486 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Na3a2eb329a66454997fa5e55166cfc53 rdf:first sg:person.016427176172.93
    127 rdf:rest rdf:nil
    128 Na7cd067e194946498166ba4b811509a8 rdf:first sg:person.01014365475.33
    129 rdf:rest Ne8e381975f9547bfa39f05c9db7c7116
    130 Ne8e381975f9547bfa39f05c9db7c7116 rdf:first sg:person.016025561605.15
    131 rdf:rest Na3a2eb329a66454997fa5e55166cfc53
    132 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Mathematical Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Numerical and Computational Mathematics
    137 rdf:type schema:DefinedTerm
    138 sg:journal.1044187 schema:issn 0022-3239
    139 1573-2878
    140 schema:name Journal of Optimization Theory and Applications
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.01014365475.33 schema:affiliation grid-institutes:grid.45672.32
    144 schema:familyName Condat
    145 schema:givenName Laurent
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014365475.33
    147 rdf:type schema:Person
    148 sg:person.016025561605.15 schema:affiliation grid-institutes:grid.45672.32
    149 schema:familyName Mishchenko
    150 schema:givenName Konstantin
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025561605.15
    152 rdf:type schema:Person
    153 sg:person.016427176172.93 schema:affiliation grid-institutes:grid.45672.32
    154 schema:familyName Richtárik
    155 schema:givenName Peter
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427176172.93
    157 rdf:type schema:Person
    158 sg:person.07715126012.51 schema:affiliation grid-institutes:grid.45672.32
    159 schema:familyName Salim
    160 schema:givenName Adil
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715126012.51
    162 rdf:type schema:Person
    163 sg:pub.10.1007/978-1-4419-9569-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700561
    164 https://doi.org/10.1007/978-1-4419-9569-8_10
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-1-4939-1124-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037691419
    167 https://doi.org/10.1007/978-1-4939-1124-0_3
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-030-39568-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127627565
    170 https://doi.org/10.1007/978-3-030-39568-1
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-319-48311-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084688822
    173 https://doi.org/10.1007/978-3-319-48311-5
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-3-319-91578-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110040882
    176 https://doi.org/10.1007/978-3-319-91578-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/bf01581204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022153870
    179 https://doi.org/10.1007/bf01581204
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10107-006-0070-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021274319
    182 https://doi.org/10.1007/s10107-006-0070-8
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10107-015-0892-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019991396
    185 https://doi.org/10.1007/s10107-015-0892-3
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10107-015-0957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909932
    188 https://doi.org/10.1007/s10107-015-0957-3
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10107-016-1044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036311274
    191 https://doi.org/10.1007/s10107-016-1044-0
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10107-018-1321-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106172667
    194 https://doi.org/10.1007/s10107-018-1321-1
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10107-019-01403-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115172565
    197 https://doi.org/10.1007/s10107-019-01403-1
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10107-020-01565-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131335764
    200 https://doi.org/10.1007/s10107-020-01565-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10444-011-9254-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372143
    203 https://doi.org/10.1007/s10444-011-9254-8
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10589-020-00238-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132459987
    206 https://doi.org/10.1007/s10589-020-00238-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10851-010-0251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010318529
    209 https://doi.org/10.1007/s10851-010-0251-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10915-018-0680-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101322880
    212 https://doi.org/10.1007/s10915-018-0680-3
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s10957-012-0245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180321
    215 https://doi.org/10.1007/s10957-012-0245-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s11228-011-0191-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037327416
    218 https://doi.org/10.1007/s11228-011-0191-y
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11228-017-0421-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086031536
    221 https://doi.org/10.1007/s11228-017-0421-z
    222 rdf:type schema:CreativeWork
    223 grid-institutes:grid.45672.32 schema:alternateName Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
    224 schema:name Computer Science Program, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...