Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-25

AUTHORS

Yao-Qun Wu, Jia Wei He

ABSTRACT

This paper investigates the Sobolev-type problems for Hilfer fractional stochastic evolution equations and optimal controls in Hilbert spaces. With the help of a characteristic solution operator and its properties, we present an existence of mild solutions to the fractional stochastic evolution equations. Moreover, some sufficient conditions are established for the existence conditions of optimal state control pairs of the limited Lagrange optimal systems. Our methods are based on the fractional calculus, Hölder inequality, stochastic analysis and fixed point theorem. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-022-02059-2

DOI

http://dx.doi.org/10.1007/s10957-022-02059-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148970109


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Information Engineering, Shaoyang University, 422000, Hunan, China", 
          "id": "http://www.grid.ac/institutes/grid.449642.9", 
          "name": [
            "School of Information Engineering, Shaoyang University, 422000, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Yao-Qun", 
        "id": "sg:person.015535361051.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535361051.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mathematics and Information Science, Guangxi University, 530004, Nanning, China", 
          "id": "http://www.grid.ac/institutes/grid.256609.e", 
          "name": [
            "College of Mathematics and Information Science, Guangxi University, 530004, Nanning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Jia Wei", 
        "id": "sg:person.010350740574.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350740574.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12555-016-0213-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085463064", 
          "https://doi.org/10.1007/s12555-016-0213-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-017-1122-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086036831", 
          "https://doi.org/10.1007/s10957-017-1122-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-012-0174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007303089", 
          "https://doi.org/10.1007/s10957-012-0174-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01171449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020695835", 
          "https://doi.org/10.1007/bf01171449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9697-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014370500", 
          "https://doi.org/10.1007/s11071-010-9697-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-018-1314-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104154515", 
          "https://doi.org/10.1007/s10957-018-1314-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40840-016-0415-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030646428", 
          "https://doi.org/10.1007/s40840-016-0415-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-25", 
    "datePublishedReg": "2022-06-25", 
    "description": "This paper investigates the Sobolev-type problems for Hilfer fractional stochastic evolution equations and optimal controls in Hilbert spaces. With the help of a characteristic solution operator and its properties, we present an existence of mild solutions to the fractional stochastic evolution equations. Moreover, some sufficient conditions are established for the existence conditions of optimal state control pairs of the limited Lagrange optimal systems. Our methods are based on the fractional calculus, H\u00f6lder inequality, stochastic analysis and fixed point theorem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-022-02059-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "stochastic evolution equations", 
      "fractional stochastic evolution equations", 
      "evolution equations", 
      "optimal control", 
      "optimal state-control pair", 
      "state-control pairs", 
      "characteristic solution operators", 
      "mild solutions", 
      "solution operator", 
      "point theorem", 
      "Hilbert space", 
      "existence conditions", 
      "stochastic analysis", 
      "fractional calculus", 
      "sufficient conditions", 
      "H\u00f6lder inequality", 
      "optimal system", 
      "equations", 
      "theorem", 
      "existence", 
      "operators", 
      "control pairs", 
      "calculus", 
      "inequality", 
      "space", 
      "problem", 
      "solution", 
      "properties", 
      "conditions", 
      "system", 
      "control", 
      "help", 
      "pairs", 
      "analysis", 
      "paper", 
      "method"
    ], 
    "name": "Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148970109"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-022-02059-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-022-02059-2", 
      "https://app.dimensions.ai/details/publication/pub.1148970109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_930.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-022-02059-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02059-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02059-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02059-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02059-2'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      66 URIs      50 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-022-02059-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0104
4 schema:author Nc23fb8ec4d3a4752b6aedbac647a0888
5 schema:citation sg:pub.10.1007/bf01171449
6 sg:pub.10.1007/s10957-012-0174-7
7 sg:pub.10.1007/s10957-017-1122-3
8 sg:pub.10.1007/s10957-018-1314-5
9 sg:pub.10.1007/s11071-010-9697-3
10 sg:pub.10.1007/s12555-016-0213-5
11 sg:pub.10.1007/s40840-016-0415-2
12 schema:datePublished 2022-06-25
13 schema:datePublishedReg 2022-06-25
14 schema:description This paper investigates the Sobolev-type problems for Hilfer fractional stochastic evolution equations and optimal controls in Hilbert spaces. With the help of a characteristic solution operator and its properties, we present an existence of mild solutions to the fractional stochastic evolution equations. Moreover, some sufficient conditions are established for the existence conditions of optimal state control pairs of the limited Lagrange optimal systems. Our methods are based on the fractional calculus, Hölder inequality, stochastic analysis and fixed point theorem.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1044187
18 schema:keywords Hilbert space
19 Hölder inequality
20 analysis
21 calculus
22 characteristic solution operators
23 conditions
24 control
25 control pairs
26 equations
27 evolution equations
28 existence
29 existence conditions
30 fractional calculus
31 fractional stochastic evolution equations
32 help
33 inequality
34 method
35 mild solutions
36 operators
37 optimal control
38 optimal state-control pair
39 optimal system
40 pairs
41 paper
42 point theorem
43 problem
44 properties
45 solution
46 solution operator
47 space
48 state-control pairs
49 stochastic analysis
50 stochastic evolution equations
51 sufficient conditions
52 system
53 theorem
54 schema:name Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations
55 schema:pagination 1-23
56 schema:productId N570df3cb7e364cd98dd6d013244a575b
57 N9a5ffea792664f56b3a55d020a03ca75
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148970109
59 https://doi.org/10.1007/s10957-022-02059-2
60 schema:sdDatePublished 2022-09-02T16:07
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nefb54bfe5cd04267b1f04c0923161583
63 schema:url https://doi.org/10.1007/s10957-022-02059-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0ac5a558e0e34ad394a90eef5473a2f7 rdf:first sg:person.010350740574.79
68 rdf:rest rdf:nil
69 N570df3cb7e364cd98dd6d013244a575b schema:name doi
70 schema:value 10.1007/s10957-022-02059-2
71 rdf:type schema:PropertyValue
72 N9a5ffea792664f56b3a55d020a03ca75 schema:name dimensions_id
73 schema:value pub.1148970109
74 rdf:type schema:PropertyValue
75 Nc23fb8ec4d3a4752b6aedbac647a0888 rdf:first sg:person.015535361051.35
76 rdf:rest N0ac5a558e0e34ad394a90eef5473a2f7
77 Nefb54bfe5cd04267b1f04c0923161583 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
83 schema:name Applied Mathematics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
86 schema:name Statistics
87 rdf:type schema:DefinedTerm
88 sg:journal.1044187 schema:issn 0022-3239
89 1573-2878
90 schema:name Journal of Optimization Theory and Applications
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.010350740574.79 schema:affiliation grid-institutes:grid.256609.e
94 schema:familyName He
95 schema:givenName Jia Wei
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010350740574.79
97 rdf:type schema:Person
98 sg:person.015535361051.35 schema:affiliation grid-institutes:grid.449642.9
99 schema:familyName Wu
100 schema:givenName Yao-Qun
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535361051.35
102 rdf:type schema:Person
103 sg:pub.10.1007/bf01171449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020695835
104 https://doi.org/10.1007/bf01171449
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10957-012-0174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007303089
107 https://doi.org/10.1007/s10957-012-0174-7
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10957-017-1122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086036831
110 https://doi.org/10.1007/s10957-017-1122-3
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10957-018-1314-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104154515
113 https://doi.org/10.1007/s10957-018-1314-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11071-010-9697-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014370500
116 https://doi.org/10.1007/s11071-010-9697-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12555-016-0213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085463064
119 https://doi.org/10.1007/s12555-016-0213-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s40840-016-0415-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030646428
122 https://doi.org/10.1007/s40840-016-0415-2
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.256609.e schema:alternateName College of Mathematics and Information Science, Guangxi University, 530004, Nanning, China
125 schema:name College of Mathematics and Information Science, Guangxi University, 530004, Nanning, China
126 rdf:type schema:Organization
127 grid-institutes:grid.449642.9 schema:alternateName School of Information Engineering, Shaoyang University, 422000, Hunan, China
128 schema:name School of Information Engineering, Shaoyang University, 422000, Hunan, China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...