Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-29

AUTHORS

Fabiola Roxana Villanueva, Valeriano Antunes de Oliveira

ABSTRACT

This work addresses interval optimization problems in which the objective function is interval-valued while the constraints are given in functional and abstract forms. The functional constraints are described by means of both inequalities and equalities. The abstract constraint is expressed through a closed and convex set with a nonempty interior. Necessary optimality conditions are derived, given in a multiplier rule structure involving the gH-gradient of the interval objective function along with the (classical) gradients of the constraint functions and the normal cone to the set related to the abstract constraint. The main tool is a specification of the Dubovitskii–Milyutin formalism. We defined an appropriated notion of directions of decrease to an interval-valued function, using the lower–upper partial ordering of the interval space (LU order). More... »

PAGES

896-923

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-022-02055-6

DOI

http://dx.doi.org/10.1007/s10957-022-02055-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149066907


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad Mayor de San Andr\u00e9s, Carrera de Matem\u00e1tica, La Paz, Bolivia", 
          "id": "http://www.grid.ac/institutes/grid.10421.36", 
          "name": [
            "Universidad Mayor de San Andr\u00e9s, Carrera de Matem\u00e1tica, La Paz, Bolivia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villanueva", 
        "givenName": "Fabiola Roxana", 
        "id": "sg:person.011204607670.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204607670.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "S\u00e3o Paulo State University, S\u00e3o Jos\u00e9 do Rio Preto, S\u00e3o Paulo, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "S\u00e3o Paulo State University, S\u00e3o Jos\u00e9 do Rio Preto, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "Valeriano Antunes", 
        "id": "sg:person.014771252652.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771252652.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-387-70914-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024035369", 
          "https://doi.org/10.1007/978-0-387-70914-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-012-0601-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045129063", 
          "https://doi.org/10.1007/s11590-012-0601-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-007-0156-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050871832", 
          "https://doi.org/10.1007/s00186-007-0156-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12190-019-01274-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117995438", 
          "https://doi.org/10.1007/s12190-019-01274-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10288-017-0369-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100189216", 
          "https://doi.org/10.1007/s10288-017-0369-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031735024", 
          "https://doi.org/10.1007/978-3-642-69512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10700-013-9156-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683779", 
          "https://doi.org/10.1007/s10700-013-9156-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12597-021-00531-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138864134", 
          "https://doi.org/10.1007/s12597-021-00531-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-29", 
    "datePublishedReg": "2022-06-29", 
    "description": "This work addresses interval optimization problems in which the objective function is interval-valued while the constraints are given in functional and abstract forms. The functional constraints are described by means of both inequalities and equalities. The abstract constraint is expressed through a closed and convex set with a nonempty interior. Necessary optimality conditions are derived, given in a multiplier rule structure involving the gH-gradient of the interval objective function along with the (classical) gradients of the constraint functions and the normal cone to the set related to the abstract constraint. The main tool is a specification of the Dubovitskii\u2013Milyutin formalism. We defined an appropriated notion of directions of decrease to an interval-valued function, using the lower\u2013upper partial ordering of the interval space (LU order).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-022-02055-6", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4473834", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "194"
      }
    ], 
    "keywords": [
      "interval optimization problem", 
      "necessary optimality conditions", 
      "optimality conditions", 
      "optimization problem", 
      "abstract constraints", 
      "objective function", 
      "interval objective function", 
      "interval-valued functions", 
      "constraint functions", 
      "nonempty interior", 
      "normal cone", 
      "partial ordering", 
      "interval space", 
      "main tool", 
      "constraints", 
      "problem", 
      "rule structure", 
      "convex", 
      "formalism", 
      "abstract form", 
      "ordering", 
      "function", 
      "functional constraints", 
      "inequality", 
      "space", 
      "set", 
      "cone", 
      "conditions", 
      "gradient", 
      "direction", 
      "interior", 
      "notion", 
      "equality", 
      "structure", 
      "means", 
      "form", 
      "tool", 
      "work", 
      "specification", 
      "decrease"
    ], 
    "name": "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints", 
    "pagination": "896-923", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149066907"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-022-02055-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-022-02055-6", 
      "https://app.dimensions.ai/details/publication/pub.1149066907"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_955.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-022-02055-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02055-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02055-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02055-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02055-6'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      72 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-022-02055-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N27996c435b5d40b99c0a8da300287876
4 schema:citation sg:pub.10.1007/978-0-387-70914-7
5 sg:pub.10.1007/978-3-642-69512-4
6 sg:pub.10.1007/s00186-007-0156-y
7 sg:pub.10.1007/s10288-017-0369-8
8 sg:pub.10.1007/s10700-013-9156-y
9 sg:pub.10.1007/s11590-012-0601-6
10 sg:pub.10.1007/s12190-019-01274-x
11 sg:pub.10.1007/s12597-021-00531-7
12 schema:datePublished 2022-06-29
13 schema:datePublishedReg 2022-06-29
14 schema:description This work addresses interval optimization problems in which the objective function is interval-valued while the constraints are given in functional and abstract forms. The functional constraints are described by means of both inequalities and equalities. The abstract constraint is expressed through a closed and convex set with a nonempty interior. Necessary optimality conditions are derived, given in a multiplier rule structure involving the gH-gradient of the interval objective function along with the (classical) gradients of the constraint functions and the normal cone to the set related to the abstract constraint. The main tool is a specification of the Dubovitskii–Milyutin formalism. We defined an appropriated notion of directions of decrease to an interval-valued function, using the lower–upper partial ordering of the interval space (LU order).
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N6e9baa09a7c44a8e80acd7f3aed31b9b
18 Nd7624781b83945678deea71aef233631
19 sg:journal.1044187
20 schema:keywords abstract constraints
21 abstract form
22 conditions
23 cone
24 constraint functions
25 constraints
26 convex
27 decrease
28 direction
29 equality
30 form
31 formalism
32 function
33 functional constraints
34 gradient
35 inequality
36 interior
37 interval objective function
38 interval optimization problem
39 interval space
40 interval-valued functions
41 main tool
42 means
43 necessary optimality conditions
44 nonempty interior
45 normal cone
46 notion
47 objective function
48 optimality conditions
49 optimization problem
50 ordering
51 partial ordering
52 problem
53 rule structure
54 set
55 space
56 specification
57 structure
58 tool
59 work
60 schema:name Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints
61 schema:pagination 896-923
62 schema:productId N056139a37d5a47809606f81f60de077d
63 N2156fd7200a44e779869dad0dd0e5684
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149066907
65 https://doi.org/10.1007/s10957-022-02055-6
66 schema:sdDatePublished 2022-10-01T06:51
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N31570c6ccba34c3cabde7ae350935d8d
69 schema:url https://doi.org/10.1007/s10957-022-02055-6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N056139a37d5a47809606f81f60de077d schema:name dimensions_id
74 schema:value pub.1149066907
75 rdf:type schema:PropertyValue
76 N2156fd7200a44e779869dad0dd0e5684 schema:name doi
77 schema:value 10.1007/s10957-022-02055-6
78 rdf:type schema:PropertyValue
79 N27996c435b5d40b99c0a8da300287876 rdf:first sg:person.011204607670.06
80 rdf:rest Nb81fc45a86b943a19f7a88e9ddf0af5e
81 N31570c6ccba34c3cabde7ae350935d8d schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N6e9baa09a7c44a8e80acd7f3aed31b9b schema:issueNumber 3
84 rdf:type schema:PublicationIssue
85 Nb81fc45a86b943a19f7a88e9ddf0af5e rdf:first sg:person.014771252652.47
86 rdf:rest rdf:nil
87 Nd7624781b83945678deea71aef233631 schema:volumeNumber 194
88 rdf:type schema:PublicationVolume
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Numerical and Computational Mathematics
94 rdf:type schema:DefinedTerm
95 sg:grant.4473834 http://pending.schema.org/fundedItem sg:pub.10.1007/s10957-022-02055-6
96 rdf:type schema:MonetaryGrant
97 sg:journal.1044187 schema:issn 0022-3239
98 1573-2878
99 schema:name Journal of Optimization Theory and Applications
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.011204607670.06 schema:affiliation grid-institutes:grid.10421.36
103 schema:familyName Villanueva
104 schema:givenName Fabiola Roxana
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204607670.06
106 rdf:type schema:Person
107 sg:person.014771252652.47 schema:affiliation grid-institutes:grid.410543.7
108 schema:familyName de Oliveira
109 schema:givenName Valeriano Antunes
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771252652.47
111 rdf:type schema:Person
112 sg:pub.10.1007/978-0-387-70914-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024035369
113 https://doi.org/10.1007/978-0-387-70914-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-69512-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031735024
116 https://doi.org/10.1007/978-3-642-69512-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00186-007-0156-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050871832
119 https://doi.org/10.1007/s00186-007-0156-y
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10288-017-0369-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100189216
122 https://doi.org/10.1007/s10288-017-0369-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10700-013-9156-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683779
125 https://doi.org/10.1007/s10700-013-9156-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11590-012-0601-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045129063
128 https://doi.org/10.1007/s11590-012-0601-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s12190-019-01274-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1117995438
131 https://doi.org/10.1007/s12190-019-01274-x
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s12597-021-00531-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138864134
134 https://doi.org/10.1007/s12597-021-00531-7
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.10421.36 schema:alternateName Universidad Mayor de San Andrés, Carrera de Matemática, La Paz, Bolivia
137 schema:name Universidad Mayor de San Andrés, Carrera de Matemática, La Paz, Bolivia
138 rdf:type schema:Organization
139 grid-institutes:grid.410543.7 schema:alternateName São Paulo State University, São José do Rio Preto, São Paulo, Brazil
140 schema:name São Paulo State University, São José do Rio Preto, São Paulo, Brazil
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...