A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-20

AUTHORS

Nguyen Dinh, Dang Hai Long

ABSTRACT

In this paper, we study a general minimization vector problem which is expressed in terms of a perturbation mapping defined on a product of locally convex Hausdorff topological vector spaces with values in another locally convex topological vector space. Several representations of the epigraph of the conjugate of the perturbation mapping are given, and then, variants vector Farkas lemmas associated with the system defined by this mapping are established. A dual problem and another so-called loose dual problem of the mentioned problem are defined and stable strong duality results between these pairs of primal–dual problems are established. The results just obtained are then applied to a general class of composed constrained vector optimization problems. For this class of problems, two concrete perturbation mappings are proposed. These perturbation mappings give rise to variants of dual problems including the Lagrange dual problem and several kinds of Fenchel–Lagrange dual problems of the problem under consideration. Stable strong duality results for these pairs of primal–dual problems are derived. Several classes of concrete vector (and scalar) optimization problems are also considered at the end of the paper to illustrate the significance of our approach. More... »

PAGES

713-748

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-022-02052-9

DOI

http://dx.doi.org/10.1007/s10957-022-02052-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148809384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vietnam National University - HCMC, Linh Trung Ward, Thu Duc, Ho Chi Minh City, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.444808.4", 
          "name": [
            "Department of Mathematics, International University, VNU-HCM, Thu Duc City, Vietnam", 
            "Vietnam National University - HCMC, Linh Trung Ward, Thu Duc, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dinh", 
        "givenName": "Nguyen", 
        "id": "sg:person.012053525153.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053525153.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tien Giang University, Tien Giang Town, Vietnam", 
          "id": "http://www.grid.ac/institutes/grid.448947.2", 
          "name": [
            "VNUHCM - University of Science, District 5, Ho Chi Minh City, Vietnam", 
            "Tien Giang University, Tien Giang Town, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Dang Hai", 
        "id": "sg:person.010070202504.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070202504.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-04900-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036910645", 
          "https://doi.org/10.1007/978-3-642-04900-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50280-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033393869", 
          "https://doi.org/10.1007/978-3-642-50280-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-007-9247-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022360620", 
          "https://doi.org/10.1007/s10957-007-9247-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-016-1055-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053962139", 
          "https://doi.org/10.1007/s10957-016-1055-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-013-0100-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035439666", 
          "https://doi.org/10.1007/s10898-013-0100-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02886-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006659336", 
          "https://doi.org/10.1007/978-3-642-02886-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00933437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046502013", 
          "https://doi.org/10.1007/bf00933437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-006-0125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019647420", 
          "https://doi.org/10.1007/s00186-006-0125-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10013-018-0283-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101557210", 
          "https://doi.org/10.1007/s10013-018-0283-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-008-9300-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899876", 
          "https://doi.org/10.1007/s10898-008-9300-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-54265-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548611", 
          "https://doi.org/10.1007/978-3-642-54265-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044701423", 
          "https://doi.org/10.1007/978-3-642-17005-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-08900-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017776137", 
          "https://doi.org/10.1007/978-3-319-08900-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-018-1352-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105947235", 
          "https://doi.org/10.1007/s10957-018-1352-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-20", 
    "datePublishedReg": "2022-06-20", 
    "description": "In this paper, we study a general minimization vector problem which is expressed in terms of a perturbation mapping defined on a product of locally convex Hausdorff topological vector spaces with values in another locally convex topological vector space. Several representations of the epigraph of the conjugate of the perturbation mapping are given, and then, variants vector Farkas lemmas associated with the system defined by this mapping are established. A dual problem and another so-called loose dual problem of the mentioned problem are defined and stable strong duality results between these pairs of primal\u2013dual problems are established. The results just obtained are then applied to a general class of composed constrained vector optimization problems. For this class of problems, two concrete perturbation mappings are proposed. These perturbation mappings give rise to variants of dual problems including the Lagrange dual problem and several kinds of Fenchel\u2013Lagrange dual problems of the problem under consideration. Stable strong duality results for these pairs of primal\u2013dual problems are derived. Several classes of concrete vector (and scalar) optimization problems are also considered at the end of the paper to illustrate the significance of our approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-022-02052-9", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "194"
      }
    ], 
    "keywords": [
      "vector optimization problems", 
      "topological vector spaces", 
      "strong duality results", 
      "primal-dual problem", 
      "dual problem", 
      "optimization problem", 
      "convex Hausdorff topological vector spaces", 
      "duality results", 
      "vector space", 
      "convex topological vector spaces", 
      "Hausdorff topological vector spaces", 
      "class of problems", 
      "Lagrange dual problem", 
      "Fenchel\u2013Lagrange duality", 
      "Farkas lemma", 
      "general class", 
      "perturbation approach", 
      "vector problem", 
      "perturbation mapping", 
      "problem", 
      "class", 
      "space", 
      "Lagrange", 
      "lemma", 
      "duality", 
      "mapping", 
      "approach", 
      "representation", 
      "pairs", 
      "epigraph", 
      "results", 
      "terms", 
      "system", 
      "kind", 
      "consideration", 
      "values", 
      "variants", 
      "rise", 
      "end", 
      "products", 
      "significance", 
      "conjugates", 
      "paper"
    ], 
    "name": "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel\u2013Lagrange Duality", 
    "pagination": "713-748", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148809384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-022-02052-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-022-02052-9", 
      "https://app.dimensions.ai/details/publication/pub.1148809384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_933.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-022-02052-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02052-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02052-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02052-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02052-9'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      81 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-022-02052-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N01ee99b4c55949499f2581231ae9bd57
4 schema:citation sg:pub.10.1007/978-3-319-08900-3
5 sg:pub.10.1007/978-3-642-02886-1
6 sg:pub.10.1007/978-3-642-04900-2
7 sg:pub.10.1007/978-3-642-17005-8
8 sg:pub.10.1007/978-3-642-50280-4
9 sg:pub.10.1007/978-3-642-54265-7
10 sg:pub.10.1007/bf00933437
11 sg:pub.10.1007/s00186-006-0125-x
12 sg:pub.10.1007/s10013-018-0283-1
13 sg:pub.10.1007/s10898-008-9300-3
14 sg:pub.10.1007/s10898-013-0100-z
15 sg:pub.10.1007/s10957-007-9247-4
16 sg:pub.10.1007/s10957-016-1055-2
17 sg:pub.10.1007/s10957-018-1352-z
18 schema:datePublished 2022-06-20
19 schema:datePublishedReg 2022-06-20
20 schema:description In this paper, we study a general minimization vector problem which is expressed in terms of a perturbation mapping defined on a product of locally convex Hausdorff topological vector spaces with values in another locally convex topological vector space. Several representations of the epigraph of the conjugate of the perturbation mapping are given, and then, variants vector Farkas lemmas associated with the system defined by this mapping are established. A dual problem and another so-called loose dual problem of the mentioned problem are defined and stable strong duality results between these pairs of primal–dual problems are established. The results just obtained are then applied to a general class of composed constrained vector optimization problems. For this class of problems, two concrete perturbation mappings are proposed. These perturbation mappings give rise to variants of dual problems including the Lagrange dual problem and several kinds of Fenchel–Lagrange dual problems of the problem under consideration. Stable strong duality results for these pairs of primal–dual problems are derived. Several classes of concrete vector (and scalar) optimization problems are also considered at the end of the paper to illustrate the significance of our approach.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N70e9b460a84a4dd794222c73a1adc064
24 Nf8c38a2e886c4ffdbd40d767166808ef
25 sg:journal.1044187
26 schema:keywords Farkas lemma
27 Fenchel–Lagrange duality
28 Hausdorff topological vector spaces
29 Lagrange
30 Lagrange dual problem
31 approach
32 class
33 class of problems
34 conjugates
35 consideration
36 convex Hausdorff topological vector spaces
37 convex topological vector spaces
38 dual problem
39 duality
40 duality results
41 end
42 epigraph
43 general class
44 kind
45 lemma
46 mapping
47 optimization problem
48 pairs
49 paper
50 perturbation approach
51 perturbation mapping
52 primal-dual problem
53 problem
54 products
55 representation
56 results
57 rise
58 significance
59 space
60 strong duality results
61 system
62 terms
63 topological vector spaces
64 values
65 variants
66 vector optimization problems
67 vector problem
68 vector space
69 schema:name A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality
70 schema:pagination 713-748
71 schema:productId N9dd032a969ca481aa10a306e165fafa5
72 Na5d50ebc38ef409b966365622c1e340f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148809384
74 https://doi.org/10.1007/s10957-022-02052-9
75 schema:sdDatePublished 2022-12-01T06:44
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Naba4137473f14e69a5943190db759370
78 schema:url https://doi.org/10.1007/s10957-022-02052-9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N01ee99b4c55949499f2581231ae9bd57 rdf:first sg:person.012053525153.02
83 rdf:rest Ndcb0a9dc7ec94c949b28234bd6168d86
84 N70e9b460a84a4dd794222c73a1adc064 schema:issueNumber 2
85 rdf:type schema:PublicationIssue
86 N9dd032a969ca481aa10a306e165fafa5 schema:name dimensions_id
87 schema:value pub.1148809384
88 rdf:type schema:PropertyValue
89 Na5d50ebc38ef409b966365622c1e340f schema:name doi
90 schema:value 10.1007/s10957-022-02052-9
91 rdf:type schema:PropertyValue
92 Naba4137473f14e69a5943190db759370 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ndcb0a9dc7ec94c949b28234bd6168d86 rdf:first sg:person.010070202504.52
95 rdf:rest rdf:nil
96 Nf8c38a2e886c4ffdbd40d767166808ef schema:volumeNumber 194
97 rdf:type schema:PublicationVolume
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Numerical and Computational Mathematics
103 rdf:type schema:DefinedTerm
104 sg:journal.1044187 schema:issn 0022-3239
105 1573-2878
106 schema:name Journal of Optimization Theory and Applications
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.010070202504.52 schema:affiliation grid-institutes:grid.448947.2
110 schema:familyName Long
111 schema:givenName Dang Hai
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070202504.52
113 rdf:type schema:Person
114 sg:person.012053525153.02 schema:affiliation grid-institutes:grid.444808.4
115 schema:familyName Dinh
116 schema:givenName Nguyen
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053525153.02
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-319-08900-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017776137
120 https://doi.org/10.1007/978-3-319-08900-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-642-02886-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659336
123 https://doi.org/10.1007/978-3-642-02886-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-642-04900-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036910645
126 https://doi.org/10.1007/978-3-642-04900-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-642-17005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044701423
129 https://doi.org/10.1007/978-3-642-17005-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-642-50280-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033393869
132 https://doi.org/10.1007/978-3-642-50280-4
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-642-54265-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548611
135 https://doi.org/10.1007/978-3-642-54265-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf00933437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046502013
138 https://doi.org/10.1007/bf00933437
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00186-006-0125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019647420
141 https://doi.org/10.1007/s00186-006-0125-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10013-018-0283-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101557210
144 https://doi.org/10.1007/s10013-018-0283-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10898-008-9300-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021899876
147 https://doi.org/10.1007/s10898-008-9300-3
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10898-013-0100-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035439666
150 https://doi.org/10.1007/s10898-013-0100-z
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10957-007-9247-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022360620
153 https://doi.org/10.1007/s10957-007-9247-4
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10957-016-1055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053962139
156 https://doi.org/10.1007/s10957-016-1055-2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10957-018-1352-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105947235
159 https://doi.org/10.1007/s10957-018-1352-z
160 rdf:type schema:CreativeWork
161 grid-institutes:grid.444808.4 schema:alternateName Vietnam National University - HCMC, Linh Trung Ward, Thu Duc, Ho Chi Minh City, Vietnam
162 schema:name Department of Mathematics, International University, VNU-HCM, Thu Duc City, Vietnam
163 Vietnam National University - HCMC, Linh Trung Ward, Thu Duc, Ho Chi Minh City, Vietnam
164 rdf:type schema:Organization
165 grid-institutes:grid.448947.2 schema:alternateName Tien Giang University, Tien Giang Town, Vietnam
166 schema:name Tien Giang University, Tien Giang Town, Vietnam
167 VNUHCM - University of Science, District 5, Ho Chi Minh City, Vietnam
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...