Perturbations of the Tcur Decomposition for Tensor Valued Data in the Tucker Format View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-24

AUTHORS

Maolin Che, Juefei Chen, Yimin Wei

ABSTRACT

The tensor CUR decomposition in the Tucker format is a special case of Tucker decomposition with a low multilinear rank, where factor matrices are obtained by selecting some columns from the mode-n unfolding of the tensor. We perform a thorough investigation of what happens to the approximations in the presence of noise. We present two forms of the tensor CUR decomposition and deduce the errors of the approximation. We illustrate how the choice of columns from each mode-n unfolding reflects the quality of the tensor CUR approximation via some numerical examples. More... »

PAGES

852-877

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-022-02051-w

DOI

http://dx.doi.org/10.1007/s10957-022-02051-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148945537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Center for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Sha Tin, Hong Kong", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Mathematics, Southwestern University of Finance and Economics, 611130, Chengdu, People\u2019s Republic of China", 
            "The Center for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Sha Tin, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Che", 
        "givenName": "Maolin", 
        "id": "sg:person.012603701043.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603701043.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Mathematical Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Juefei", 
        "id": "sg:person.015033431310.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033431310.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, 200433, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Yimin", 
        "id": "sg:person.015417232140.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417232140.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02310791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007512001", 
          "https://doi.org/10.1007/bf02310791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-13-0146-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103966102", 
          "https://doi.org/10.1007/978-981-13-0146-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029793635", 
          "https://doi.org/10.1007/s002110050451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-010-0331-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037931186", 
          "https://doi.org/10.1007/s00211-010-0331-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-2059-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126052642", 
          "https://doi.org/10.1007/978-981-15-2059-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002217813", 
          "https://doi.org/10.1007/bf02289464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-021-01545-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138950822", 
          "https://doi.org/10.1007/s10915-021-01545-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-021-2171-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139360701", 
          "https://doi.org/10.1007/s11856-021-2171-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-018-9622-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105330496", 
          "https://doi.org/10.1007/s10444-018-9622-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-24", 
    "datePublishedReg": "2022-06-24", 
    "description": "The tensor CUR decomposition in the Tucker format is a special case of Tucker decomposition with a low multilinear rank, where factor matrices are obtained by selecting some columns from the mode-n unfolding of the tensor. We perform a thorough investigation of what happens to the approximations in the presence of noise. We present two forms of the tensor CUR decomposition and deduce the errors of the approximation. We illustrate how the choice of columns from each mode-n unfolding reflects the quality of the tensor CUR approximation via some numerical examples.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-022-02051-w", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8896420", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132228", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "194"
      }
    ], 
    "keywords": [
      "thorough investigation", 
      "cases", 
      "presence", 
      "data", 
      "quality", 
      "investigation", 
      "choice", 
      "format", 
      "form", 
      "CUR decomposition", 
      "Tucker format", 
      "low multilinear rank", 
      "column", 
      "multilinear rank", 
      "presence of noise", 
      "numerical examples", 
      "special case", 
      "Tucker decomposition", 
      "factor matrices", 
      "approximation", 
      "perturbations", 
      "rank", 
      "error", 
      "decomposition", 
      "matrix", 
      "tensor", 
      "choice of column", 
      "noise", 
      "example"
    ], 
    "name": "Perturbations of the Tcur Decomposition for Tensor Valued Data in the Tucker Format", 
    "pagination": "852-877", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148945537"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-022-02051-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-022-02051-w", 
      "https://app.dimensions.ai/details/publication/pub.1148945537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_937.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-022-02051-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02051-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02051-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02051-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02051-w'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      62 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-022-02051-w schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4c4415c92a4544a1975169e5ea4ce7b0
4 schema:citation sg:pub.10.1007/978-981-13-0146-9
5 sg:pub.10.1007/978-981-15-2059-4
6 sg:pub.10.1007/bf02289464
7 sg:pub.10.1007/bf02310791
8 sg:pub.10.1007/s00211-010-0331-6
9 sg:pub.10.1007/s002110050451
10 sg:pub.10.1007/s10444-018-9622-8
11 sg:pub.10.1007/s10915-021-01545-5
12 sg:pub.10.1007/s11856-021-2171-8
13 schema:datePublished 2022-06-24
14 schema:datePublishedReg 2022-06-24
15 schema:description The tensor CUR decomposition in the Tucker format is a special case of Tucker decomposition with a low multilinear rank, where factor matrices are obtained by selecting some columns from the mode-n unfolding of the tensor. We perform a thorough investigation of what happens to the approximations in the presence of noise. We present two forms of the tensor CUR decomposition and deduce the errors of the approximation. We illustrate how the choice of columns from each mode-n unfolding reflects the quality of the tensor CUR approximation via some numerical examples.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N2bae31480a0046d3945df111d6f6e576
19 N38c07b9f39c64e82bd0a947ae2c879a5
20 sg:journal.1044187
21 schema:keywords CUR decomposition
22 Tucker decomposition
23 Tucker format
24 approximation
25 cases
26 choice
27 choice of column
28 column
29 data
30 decomposition
31 error
32 example
33 factor matrices
34 form
35 format
36 investigation
37 low multilinear rank
38 matrix
39 multilinear rank
40 noise
41 numerical examples
42 perturbations
43 presence
44 presence of noise
45 quality
46 rank
47 special case
48 tensor
49 thorough investigation
50 schema:name Perturbations of the Tcur Decomposition for Tensor Valued Data in the Tucker Format
51 schema:pagination 852-877
52 schema:productId N229dbd6019974e42b7de25004fd7c88a
53 Nb2ccfc531f894a2eb5c5715dc823739f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148945537
55 https://doi.org/10.1007/s10957-022-02051-w
56 schema:sdDatePublished 2022-09-02T16:08
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N77f14f6be78e492cbfb5322059e4f56c
59 schema:url https://doi.org/10.1007/s10957-022-02051-w
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N229dbd6019974e42b7de25004fd7c88a schema:name dimensions_id
64 schema:value pub.1148945537
65 rdf:type schema:PropertyValue
66 N2bae31480a0046d3945df111d6f6e576 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 N38c07b9f39c64e82bd0a947ae2c879a5 schema:volumeNumber 194
69 rdf:type schema:PublicationVolume
70 N4c4415c92a4544a1975169e5ea4ce7b0 rdf:first sg:person.012603701043.18
71 rdf:rest Nec99920f0ef74e628f742385a8a03d10
72 N7792664f414b4acf8aa6cb432f52a749 rdf:first sg:person.015417232140.28
73 rdf:rest rdf:nil
74 N77f14f6be78e492cbfb5322059e4f56c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nb2ccfc531f894a2eb5c5715dc823739f schema:name doi
77 schema:value 10.1007/s10957-022-02051-w
78 rdf:type schema:PropertyValue
79 Nec99920f0ef74e628f742385a8a03d10 rdf:first sg:person.015033431310.57
80 rdf:rest N7792664f414b4acf8aa6cb432f52a749
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
85 schema:name Numerical and Computational Mathematics
86 rdf:type schema:DefinedTerm
87 sg:grant.8132228 http://pending.schema.org/fundedItem sg:pub.10.1007/s10957-022-02051-w
88 rdf:type schema:MonetaryGrant
89 sg:grant.8896420 http://pending.schema.org/fundedItem sg:pub.10.1007/s10957-022-02051-w
90 rdf:type schema:MonetaryGrant
91 sg:journal.1044187 schema:issn 0022-3239
92 1573-2878
93 schema:name Journal of Optimization Theory and Applications
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.012603701043.18 schema:affiliation grid-institutes:None
97 schema:familyName Che
98 schema:givenName Maolin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603701043.18
100 rdf:type schema:Person
101 sg:person.015033431310.57 schema:affiliation grid-institutes:grid.8547.e
102 schema:familyName Chen
103 schema:givenName Juefei
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033431310.57
105 rdf:type schema:Person
106 sg:person.015417232140.28 schema:affiliation grid-institutes:grid.8547.e
107 schema:familyName Wei
108 schema:givenName Yimin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417232140.28
110 rdf:type schema:Person
111 sg:pub.10.1007/978-981-13-0146-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103966102
112 https://doi.org/10.1007/978-981-13-0146-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-981-15-2059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126052642
115 https://doi.org/10.1007/978-981-15-2059-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02289464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217813
118 https://doi.org/10.1007/bf02289464
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02310791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007512001
121 https://doi.org/10.1007/bf02310791
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00211-010-0331-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037931186
124 https://doi.org/10.1007/s00211-010-0331-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s002110050451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029793635
127 https://doi.org/10.1007/s002110050451
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10444-018-9622-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105330496
130 https://doi.org/10.1007/s10444-018-9622-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10915-021-01545-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138950822
133 https://doi.org/10.1007/s10915-021-01545-5
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11856-021-2171-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139360701
136 https://doi.org/10.1007/s11856-021-2171-8
137 rdf:type schema:CreativeWork
138 grid-institutes:None schema:alternateName The Center for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Sha Tin, Hong Kong
139 schema:name School of Mathematics, Southwestern University of Finance and Economics, 611130, Chengdu, People’s Republic of China
140 The Center for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Sha Tin, Hong Kong
141 rdf:type schema:Organization
142 grid-institutes:grid.8547.e schema:alternateName School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
143 School of Mathematical Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
144 schema:name School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
145 School of Mathematical Sciences, Fudan University, 200433, Shanghai, People’s Republic of China
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...