Optimality Conditions for Linear-Convex Optimal Control Problems with Mixed Constraints View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-30

AUTHORS

Jorge Becerril, Cristopher Hermosilla

ABSTRACT

In this paper, we provide sufficient optimality conditions for convex optimal control problems with mixed constraints. On one hand, the data delimiting the problem we consider is continuous and jointly convex on the state and control variables, but on the other hand, smoothness on the data of the problem, on the candidate to minimizer and/or on the multipliers is not needed. We also show that, under a suitable interior feasibility condition, the optimality conditions are necessary as well and can be written as a Maximum Principle in normal form. The novelty of this last part is that no additional regularity conditions on the mixed constraints, such as the Mangasarian–Fromovitz constraint qualification or the bounded slope condition, are required. A discussion about the regularity of the costate is also provided. More... »

PAGES

795-820

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-022-02049-4

DOI

http://dx.doi.org/10.1007/s10957-022-02049-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149110150


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Ingenier\u00eda y Ciencias, Instituto Tecnol\u00f3gico y de Estudios Superiores de Monterrey, Monterrey, Estado de M\u00e9xico, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.419886.a", 
          "name": [
            "Departamento de Ingenier\u00eda y Ciencias, Instituto Tecnol\u00f3gico y de Estudios Superiores de Monterrey, Monterrey, Estado de M\u00e9xico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becerril", 
        "givenName": "Jorge", 
        "id": "sg:person.011603063201.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011603063201.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Valparaiso, Chile", 
          "id": "http://www.grid.ac/institutes/grid.12148.3e", 
          "name": [
            "Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Valparaiso, Chile"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hermosilla", 
        "givenName": "Cristopher", 
        "id": "sg:person.07420127161.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420127161.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11228-017-0444-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091497662", 
          "https://doi.org/10.1007/s11228-017-0444-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-016-1028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047178020", 
          "https://doi.org/10.1007/s10107-016-1028-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-009-0122-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023055316", 
          "https://doi.org/10.1007/s11228-009-0122-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266115030106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048064940", 
          "https://doi.org/10.1134/s0012266115030106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-019-01623-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123613696", 
          "https://doi.org/10.1007/s10957-019-01623-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046814332", 
          "https://doi.org/10.1007/bf02192163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01128760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037419966", 
          "https://doi.org/10.1007/bf01128760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31246-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040655904", 
          "https://doi.org/10.1007/3-540-31246-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10625-005-0311-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009097776", 
          "https://doi.org/10.1007/s10625-005-0311-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-015-0358-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039148835", 
          "https://doi.org/10.1007/s11228-015-0358-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-30", 
    "datePublishedReg": "2022-06-30", 
    "description": "In this paper, we provide sufficient optimality conditions for convex optimal control problems with mixed constraints. On one hand, the data delimiting the problem we consider is continuous and jointly convex on the state and control variables, but on the other hand, smoothness on the data of the problem, on the candidate to minimizer and/or on the multipliers is not needed. We also show that, under a suitable interior feasibility condition, the optimality conditions are necessary as well and can be written as a Maximum Principle in normal form. The novelty of this last part is that no additional regularity conditions on the mixed constraints, such as the Mangasarian\u2013Fromovitz constraint qualification or the bounded slope condition, are required. A discussion about the regularity of the costate is also provided.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-022-02049-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "194"
      }
    ], 
    "keywords": [
      "optimal control problem", 
      "mixed constraints", 
      "optimality conditions", 
      "control problem", 
      "convex optimal control problem", 
      "Mangasarian-Fromovitz constraint qualification", 
      "sufficient optimality conditions", 
      "additional regularity conditions", 
      "bounded slope condition", 
      "maximum principle", 
      "constraint qualification", 
      "regularity conditions", 
      "feasibility conditions", 
      "normal form", 
      "control variables", 
      "constraints", 
      "problem", 
      "costate", 
      "minimizers", 
      "last part", 
      "multipliers", 
      "smoothness", 
      "regularity", 
      "conditions", 
      "slope conditions", 
      "variables", 
      "principles", 
      "novelty", 
      "state", 
      "data", 
      "form", 
      "hand", 
      "part", 
      "discussion", 
      "candidates", 
      "qualification", 
      "paper"
    ], 
    "name": "Optimality Conditions for Linear-Convex Optimal Control Problems with Mixed Constraints", 
    "pagination": "795-820", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149110150"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-022-02049-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-022-02049-4", 
      "https://app.dimensions.ai/details/publication/pub.1149110150"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_955.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-022-02049-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02049-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02049-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02049-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-022-02049-4'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      71 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-022-02049-4 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N0aef9a5e7da6475281d06a1a02f59835
4 schema:citation sg:pub.10.1007/3-540-31246-3
5 sg:pub.10.1007/bf01128760
6 sg:pub.10.1007/bf02192163
7 sg:pub.10.1007/s10107-016-1028-0
8 sg:pub.10.1007/s10625-005-0311-2
9 sg:pub.10.1007/s10957-019-01623-7
10 sg:pub.10.1007/s11228-009-0122-3
11 sg:pub.10.1007/s11228-015-0358-z
12 sg:pub.10.1007/s11228-017-0444-5
13 sg:pub.10.1134/s0012266115030106
14 schema:datePublished 2022-06-30
15 schema:datePublishedReg 2022-06-30
16 schema:description In this paper, we provide sufficient optimality conditions for convex optimal control problems with mixed constraints. On one hand, the data delimiting the problem we consider is continuous and jointly convex on the state and control variables, but on the other hand, smoothness on the data of the problem, on the candidate to minimizer and/or on the multipliers is not needed. We also show that, under a suitable interior feasibility condition, the optimality conditions are necessary as well and can be written as a Maximum Principle in normal form. The novelty of this last part is that no additional regularity conditions on the mixed constraints, such as the Mangasarian–Fromovitz constraint qualification or the bounded slope condition, are required. A discussion about the regularity of the costate is also provided.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf Ne3218d4b46fe4222886fd87e3bc95600
20 Nea7d97d48466434ab5c5ed9bd2f831cb
21 sg:journal.1044187
22 schema:keywords Mangasarian-Fromovitz constraint qualification
23 additional regularity conditions
24 bounded slope condition
25 candidates
26 conditions
27 constraint qualification
28 constraints
29 control problem
30 control variables
31 convex optimal control problem
32 costate
33 data
34 discussion
35 feasibility conditions
36 form
37 hand
38 last part
39 maximum principle
40 minimizers
41 mixed constraints
42 multipliers
43 normal form
44 novelty
45 optimal control problem
46 optimality conditions
47 paper
48 part
49 principles
50 problem
51 qualification
52 regularity
53 regularity conditions
54 slope conditions
55 smoothness
56 state
57 sufficient optimality conditions
58 variables
59 schema:name Optimality Conditions for Linear-Convex Optimal Control Problems with Mixed Constraints
60 schema:pagination 795-820
61 schema:productId N6ecc12cc80634f1883dcb390bb4e0539
62 Ne73f2c7ca63f473db4a1e671503cd4ea
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149110150
64 https://doi.org/10.1007/s10957-022-02049-4
65 schema:sdDatePublished 2022-10-01T06:51
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N1c379e6a3f5449f5b631e15bcc55e88e
68 schema:url https://doi.org/10.1007/s10957-022-02049-4
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0aef9a5e7da6475281d06a1a02f59835 rdf:first sg:person.011603063201.29
73 rdf:rest Nc08ac14ba5574bf69f9231cd8d868121
74 N1c379e6a3f5449f5b631e15bcc55e88e schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N6ecc12cc80634f1883dcb390bb4e0539 schema:name dimensions_id
77 schema:value pub.1149110150
78 rdf:type schema:PropertyValue
79 Nc08ac14ba5574bf69f9231cd8d868121 rdf:first sg:person.07420127161.26
80 rdf:rest rdf:nil
81 Ne3218d4b46fe4222886fd87e3bc95600 schema:volumeNumber 194
82 rdf:type schema:PublicationVolume
83 Ne73f2c7ca63f473db4a1e671503cd4ea schema:name doi
84 schema:value 10.1007/s10957-022-02049-4
85 rdf:type schema:PropertyValue
86 Nea7d97d48466434ab5c5ed9bd2f831cb schema:issueNumber 3
87 rdf:type schema:PublicationIssue
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1044187 schema:issn 0022-3239
95 1573-2878
96 schema:name Journal of Optimization Theory and Applications
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.011603063201.29 schema:affiliation grid-institutes:grid.419886.a
100 schema:familyName Becerril
101 schema:givenName Jorge
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011603063201.29
103 rdf:type schema:Person
104 sg:person.07420127161.26 schema:affiliation grid-institutes:grid.12148.3e
105 schema:familyName Hermosilla
106 schema:givenName Cristopher
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420127161.26
108 rdf:type schema:Person
109 sg:pub.10.1007/3-540-31246-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040655904
110 https://doi.org/10.1007/3-540-31246-3
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01128760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037419966
113 https://doi.org/10.1007/bf01128760
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02192163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046814332
116 https://doi.org/10.1007/bf02192163
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10107-016-1028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047178020
119 https://doi.org/10.1007/s10107-016-1028-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10625-005-0311-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009097776
122 https://doi.org/10.1007/s10625-005-0311-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10957-019-01623-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123613696
125 https://doi.org/10.1007/s10957-019-01623-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11228-009-0122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023055316
128 https://doi.org/10.1007/s11228-009-0122-3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11228-015-0358-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039148835
131 https://doi.org/10.1007/s11228-015-0358-z
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11228-017-0444-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091497662
134 https://doi.org/10.1007/s11228-017-0444-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s0012266115030106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048064940
137 https://doi.org/10.1134/s0012266115030106
138 rdf:type schema:CreativeWork
139 grid-institutes:grid.12148.3e schema:alternateName Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaiso, Chile
140 schema:name Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaiso, Chile
141 rdf:type schema:Organization
142 grid-institutes:grid.419886.a schema:alternateName Departamento de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Estado de México, Mexico
143 schema:name Departamento de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Estado de México, Mexico
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...