Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Montacer Essid, Michele Pavon

ABSTRACT

In the early 1930s, Erwin Schrödinger, motivated by his quest for a more classical formulation of quantum mechanics, posed a large deviation problem for a cloud of independent Brownian particles. He showed that the solution to the problem could be obtained through a system of two linear equations with nonlinear coupling at the boundary (Schrödinger system). Existence and uniqueness for such a system, which represents a sort of bottleneck for the problem, was first established by Fortet in 1938/1940 under rather general assumptions by proving convergence of an ingenious but complex approximation method. It is the first proof of what are nowadays called Sinkhorn-type algorithms in the much more challenging continuous case. Schrödinger bridges are also an early example of the maximum entropy approach and have been more recently recognized as a regularization of the important optimal mass transport problem. Unfortunately, Fortet’s contribution is by and large ignored in contemporary literature. This is likely due to the complexity of his approach coupled with an idiosyncratic exposition style and due to missing details and steps in the proofs. Nevertheless, Fortet’s approach maintains its importance to this day as it provides the only existing algorithmic proof, in the continuous setting, under rather mild assumptions. It can be adapted, in principle, to other relevant optimal transport problems. It is the purpose of this paper to remedy this situation by rewriting the bulk of his paper with all the missing passages and in a transparent fashion so as to make it fully available to the scientific community. We consider the problem in Rd rather than in R and use as much as possible his notation to facilitate comparison. More... »

PAGES

23-60

References to SciGraph publications

  • 1990. On the Markov processes of Schrödinger, the Feynman-Kac formula and stochastic control in REALIZATION AND MODELLING IN SYSTEM THEORY
  • 2004-06. Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes in PROBABILITY THEORY AND RELATED FIELDS
  • 1973-12. Hilbert's metric and positive contraction mappings in a Banach space in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2016-05. On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2010. Large Deviations Techniques and Applications in NONE
  • 1991. On Free Energy, Stochastic Control, and Schrödinger Processes in MODELING, ESTIMATION AND CONTROL OF SYSTEMS WITH UNCERTAINTY
  • 2000-01. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem in NUMERISCHE MATHEMATIK
  • 2015. The Nonlinear Bernstein-Schrödinger Equation in Economics in GEOMETRIC SCIENCE OF INFORMATION
  • 1975-12. The Markov processes of Schrödinger in PROBABILITY THEORY AND RELATED FIELDS
  • 1988. Random fields and diffusion processes in ÉCOLE D'ÉTÉ DE PROBABILITÉS DE SAINT-FLOUR XV–XVII, 1985–87
  • 1991-01. A stochastic control approach to reciprocal diffusion processes in APPLIED MATHEMATICS & OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-018-1436-9

    DOI

    http://dx.doi.org/10.1007/s10957-018-1436-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109903244


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Courant Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.482020.c", 
              "name": [
                "Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., 10012, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Essid", 
            "givenName": "Montacer", 
            "id": "sg:person.010252517414.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252517414.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Padua", 
              "id": "https://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Dipartimento di Matematica \u201cTullio Levi-Civita\u201d, Universit\u00e0 di Padova, via Trieste 63, 35121, Padua, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavon", 
            "givenName": "Michele", 
            "id": "sg:person.013271720101.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271720101.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00440-004-0340-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000820696", 
              "https://doi.org/10.1007/s00440-004-0340-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-004-0340-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000820696", 
              "https://doi.org/10.1007/s00440-004-0340-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0443-5_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002818114", 
              "https://doi.org/10.1007/978-1-4612-0443-5_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177703591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002960388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0086180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004533049", 
              "https://doi.org/10.1007/bfb0086180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-25040-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005159700", 
              "https://doi.org/10.1007/978-3-319-25040-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2006.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005871413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1957-0087058-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008395455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1962-0146100-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010152523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3615729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014812551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00247467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014819267", 
              "https://doi.org/10.1007/bf00247467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00247467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014819267", 
              "https://doi.org/10.1007/bf00247467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002110050002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016132384", 
              "https://doi.org/10.1007/s002110050002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-015-0803-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023137905", 
              "https://doi.org/10.1007/s10957-015-0803-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4935435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/s2-6.2.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024975083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0024-3795(89)90490-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032055716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4915289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033639209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1037757275", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03311-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037757275", 
              "https://doi.org/10.1007/978-3-642-03311-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03311-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037757275", 
              "https://doi.org/10.1007/978-3-642-03311-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3462-3_55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040960007", 
              "https://doi.org/10.1007/978-1-4612-3462-3_55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3462-3_55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040960007", 
              "https://doi.org/10.1007/978-1-4612-3462-3_55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01442404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046765842", 
              "https://doi.org/10.1007/bf01442404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00535844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048126879", 
              "https://doi.org/10.1007/bf00535844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2011.11.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053362095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.527002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058104021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.106.620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.106.620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/proc.1982.12425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061445060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/proc.1982.12427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061445062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1986.1104412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061474635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2015.2457784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061479665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2015.2457791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061479667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2016.2602103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061480225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/050631264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062846238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/141000439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062873148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/16m1061382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062874492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177731829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064402451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176993227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064404597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176996454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064405575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176348385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2528966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069974691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/dcds.2014.34.1533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071734899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/147-1/10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087827363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2010.5717072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093950737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2011.6161268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095199790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139026079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098666377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511755347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098713118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/trans2/227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098740559"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "In the early 1930s, Erwin Schr\u00f6dinger, motivated by his quest for a more classical formulation of quantum mechanics, posed a large deviation problem for a cloud of independent Brownian particles. He showed that the solution to the problem could be obtained through a system of two linear equations with nonlinear coupling at the boundary (Schr\u00f6dinger system). Existence and uniqueness for such a system, which represents a sort of bottleneck for the problem, was first established by Fortet in 1938/1940 under rather general assumptions by proving convergence of an ingenious but complex approximation method. It is the first proof of what are nowadays called Sinkhorn-type algorithms in the much more challenging continuous case. Schr\u00f6dinger bridges are also an early example of the maximum entropy approach and have been more recently recognized as a regularization of the important optimal mass transport problem. Unfortunately, Fortet\u2019s contribution is by and large ignored in contemporary literature. This is likely due to the complexity of his approach coupled with an idiosyncratic exposition style and due to missing details and steps in the proofs. Nevertheless, Fortet\u2019s approach maintains its importance to this day as it provides the only existing algorithmic proof, in the continuous setting, under rather mild assumptions. It can be adapted, in principle, to other relevant optimal transport problems. It is the purpose of this paper to remedy this situation by rewriting the bulk of his paper with all the missing passages and in a transparent fashion so as to make it fully available to the scientific community. We consider the problem in Rd rather than in R and use as much as possible his notation to facilitate comparison.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10957-018-1436-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "181"
          }
        ], 
        "name": "Traversing the Schr\u00f6dinger Bridge Strait: Robert Fortet\u2019s Marvelous Proof Redux", 
        "pagination": "23-60", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a84a1733034eaba16892ca3bd183ed77dd42743af7804ce76b50a9f07ea219a8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-018-1436-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109903244"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-018-1436-9", 
          "https://app.dimensions.ai/details/publication/pub.1109903244"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11716_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10957-018-1436-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1436-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1436-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1436-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1436-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-018-1436-9 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Ne4affd8b801a45218c66269633e4c014
    4 schema:citation sg:pub.10.1007/978-1-4612-0443-5_22
    5 sg:pub.10.1007/978-1-4612-3462-3_55
    6 sg:pub.10.1007/978-3-319-25040-3_6
    7 sg:pub.10.1007/978-3-642-03311-7
    8 sg:pub.10.1007/bf00247467
    9 sg:pub.10.1007/bf00535844
    10 sg:pub.10.1007/bf01442404
    11 sg:pub.10.1007/bfb0086180
    12 sg:pub.10.1007/s002110050002
    13 sg:pub.10.1007/s00440-004-0340-4
    14 sg:pub.10.1007/s10957-015-0803-z
    15 https://app.dimensions.ai/details/publication/pub.1037757275
    16 https://doi.org/10.1016/0024-3795(89)90490-4
    17 https://doi.org/10.1016/j.jfa.2011.11.026
    18 https://doi.org/10.1016/j.spa.2006.04.014
    19 https://doi.org/10.1017/cbo9780511755347
    20 https://doi.org/10.1017/cbo9781139026079
    21 https://doi.org/10.1063/1.3615729
    22 https://doi.org/10.1063/1.4915289
    23 https://doi.org/10.1063/1.4935435
    24 https://doi.org/10.1063/1.527002
    25 https://doi.org/10.1090/s0002-9947-1957-0087058-6
    26 https://doi.org/10.1090/s0002-9947-1962-0146100-6
    27 https://doi.org/10.1090/trans2/227
    28 https://doi.org/10.1103/physrev.106.620
    29 https://doi.org/10.1109/cdc.2010.5717072
    30 https://doi.org/10.1109/cdc.2011.6161268
    31 https://doi.org/10.1109/proc.1982.12425
    32 https://doi.org/10.1109/proc.1982.12427
    33 https://doi.org/10.1109/tac.1986.1104412
    34 https://doi.org/10.1109/tac.2015.2457784
    35 https://doi.org/10.1109/tac.2015.2457791
    36 https://doi.org/10.1109/tac.2016.2602103
    37 https://doi.org/10.1112/jlms/s2-6.2.256
    38 https://doi.org/10.1137/050631264
    39 https://doi.org/10.1137/141000439
    40 https://doi.org/10.1137/16m1061382
    41 https://doi.org/10.1214/aoms/1177703591
    42 https://doi.org/10.1214/aoms/1177731829
    43 https://doi.org/10.1214/aop/1176993227
    44 https://doi.org/10.1214/aop/1176996454
    45 https://doi.org/10.1214/aos/1176348385
    46 https://doi.org/10.2307/1970151
    47 https://doi.org/10.2307/2528966
    48 https://doi.org/10.3934/dcds.2014.34.1533
    49 https://doi.org/10.4171/147-1/10
    50 schema:datePublished 2019-04
    51 schema:datePublishedReg 2019-04-01
    52 schema:description In the early 1930s, Erwin Schrödinger, motivated by his quest for a more classical formulation of quantum mechanics, posed a large deviation problem for a cloud of independent Brownian particles. He showed that the solution to the problem could be obtained through a system of two linear equations with nonlinear coupling at the boundary (Schrödinger system). Existence and uniqueness for such a system, which represents a sort of bottleneck for the problem, was first established by Fortet in 1938/1940 under rather general assumptions by proving convergence of an ingenious but complex approximation method. It is the first proof of what are nowadays called Sinkhorn-type algorithms in the much more challenging continuous case. Schrödinger bridges are also an early example of the maximum entropy approach and have been more recently recognized as a regularization of the important optimal mass transport problem. Unfortunately, Fortet’s contribution is by and large ignored in contemporary literature. This is likely due to the complexity of his approach coupled with an idiosyncratic exposition style and due to missing details and steps in the proofs. Nevertheless, Fortet’s approach maintains its importance to this day as it provides the only existing algorithmic proof, in the continuous setting, under rather mild assumptions. It can be adapted, in principle, to other relevant optimal transport problems. It is the purpose of this paper to remedy this situation by rewriting the bulk of his paper with all the missing passages and in a transparent fashion so as to make it fully available to the scientific community. We consider the problem in Rd rather than in R and use as much as possible his notation to facilitate comparison.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree false
    56 schema:isPartOf N604fa1659fed4e11bad3b39a53afa24d
    57 Ne9992267380c4d1ea8542c1b7312f014
    58 sg:journal.1044187
    59 schema:name Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux
    60 schema:pagination 23-60
    61 schema:productId N05151009d63e4d129a41273458550fa8
    62 N58253dcfb2a541cea4601383d56d557f
    63 Ncef0fbd189154574845ea1006052dded
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109903244
    65 https://doi.org/10.1007/s10957-018-1436-9
    66 schema:sdDatePublished 2019-04-11T11:20
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Na49b87df68784549b6d7b55a0bf094ed
    69 schema:url https://link.springer.com/10.1007%2Fs10957-018-1436-9
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N05151009d63e4d129a41273458550fa8 schema:name doi
    74 schema:value 10.1007/s10957-018-1436-9
    75 rdf:type schema:PropertyValue
    76 N2f240fbe29854c4ea91eddeb87a72e7e rdf:first sg:person.013271720101.33
    77 rdf:rest rdf:nil
    78 N58253dcfb2a541cea4601383d56d557f schema:name dimensions_id
    79 schema:value pub.1109903244
    80 rdf:type schema:PropertyValue
    81 N604fa1659fed4e11bad3b39a53afa24d schema:volumeNumber 181
    82 rdf:type schema:PublicationVolume
    83 Na49b87df68784549b6d7b55a0bf094ed schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Ncef0fbd189154574845ea1006052dded schema:name readcube_id
    86 schema:value a84a1733034eaba16892ca3bd183ed77dd42743af7804ce76b50a9f07ea219a8
    87 rdf:type schema:PropertyValue
    88 Ne4affd8b801a45218c66269633e4c014 rdf:first sg:person.010252517414.38
    89 rdf:rest N2f240fbe29854c4ea91eddeb87a72e7e
    90 Ne9992267380c4d1ea8542c1b7312f014 schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Computation Theory and Mathematics
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1044187 schema:issn 0022-3239
    99 1573-2878
    100 schema:name Journal of Optimization Theory and Applications
    101 rdf:type schema:Periodical
    102 sg:person.010252517414.38 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
    103 schema:familyName Essid
    104 schema:givenName Montacer
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252517414.38
    106 rdf:type schema:Person
    107 sg:person.013271720101.33 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
    108 schema:familyName Pavon
    109 schema:givenName Michele
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271720101.33
    111 rdf:type schema:Person
    112 sg:pub.10.1007/978-1-4612-0443-5_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002818114
    113 https://doi.org/10.1007/978-1-4612-0443-5_22
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-1-4612-3462-3_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040960007
    116 https://doi.org/10.1007/978-1-4612-3462-3_55
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-319-25040-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005159700
    119 https://doi.org/10.1007/978-3-319-25040-3_6
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-03311-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037757275
    122 https://doi.org/10.1007/978-3-642-03311-7
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf00247467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014819267
    125 https://doi.org/10.1007/bf00247467
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf00535844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048126879
    128 https://doi.org/10.1007/bf00535844
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01442404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046765842
    131 https://doi.org/10.1007/bf01442404
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bfb0086180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004533049
    134 https://doi.org/10.1007/bfb0086180
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s002110050002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016132384
    137 https://doi.org/10.1007/s002110050002
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00440-004-0340-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000820696
    140 https://doi.org/10.1007/s00440-004-0340-4
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s10957-015-0803-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023137905
    143 https://doi.org/10.1007/s10957-015-0803-z
    144 rdf:type schema:CreativeWork
    145 https://app.dimensions.ai/details/publication/pub.1037757275 schema:CreativeWork
    146 https://doi.org/10.1016/0024-3795(89)90490-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032055716
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.jfa.2011.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053362095
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.spa.2006.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005871413
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1017/cbo9780511755347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098713118
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1017/cbo9781139026079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666377
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1063/1.3615729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014812551
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1063/1.4915289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033639209
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1063/1.4935435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320761
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1063/1.527002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104021
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1090/s0002-9947-1957-0087058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008395455
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1090/s0002-9947-1962-0146100-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010152523
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1090/trans2/227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740559
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/cdc.2010.5717072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093950737
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/cdc.2011.6161268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095199790
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/proc.1982.12425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445060
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/proc.1982.12427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445062
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/tac.1986.1104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061474635
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/tac.2015.2457784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479665
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/tac.2015.2457791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479667
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/tac.2016.2602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061480225
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1112/jlms/s2-6.2.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024975083
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1137/050631264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846238
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1137/141000439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873148
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1137/16m1061382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874492
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1214/aoms/1177703591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002960388
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1214/aoms/1177731829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402451
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1214/aop/1176993227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404597
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1214/aop/1176996454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405575
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1214/aos/1176348385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408602
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.2307/1970151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675492
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.2307/2528966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974691
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.3934/dcds.2014.34.1533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071734899
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.4171/147-1/10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087827363
    213 rdf:type schema:CreativeWork
    214 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
    215 schema:name Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., 10012, New York, NY, USA
    216 rdf:type schema:Organization
    217 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
    218 schema:name Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, via Trieste 63, 35121, Padua, Italy
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...