Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Antonio André Novotny, Jan Sokołowski, Antoni Żochowski

ABSTRACT

The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-018-1420-4

DOI

http://dx.doi.org/10.1007/s10957-018-1420-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107901298


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laborat\u00f3rio Nacional de Computa\u00e7\u00e3o Cient\u00edfica", 
          "id": "https://www.grid.ac/institutes/grid.452576.7", 
          "name": [
            "Laborat\u00f3rio Nacional de Computa\u00e7\u00e3o Cient\u00edfica LNCC/MCT, Coordena\u00e7\u00e3o de Matem\u00e1tica Aplicada e Computacional, Av. Get\u00falio Vargas 333, 25651-075, Petr\u00f3polis, RJ, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novotny", 
        "givenName": "Antonio Andr\u00e9", 
        "id": "sg:person.013671354153.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671354153.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Systems Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.465202.7", 
          "name": [
            "UMR 7502 Laboratoire de Math\u00e9matiques, Institut \u00c9lie Cartan, Universit\u00e9 de Lorraine, Nancy\u00a01, B.P.\u00a0239, 54506, Vandoeuvre L\u00e8s Nancy Cedex, France", 
            "Systems Research Institute, Polish Academy of Sciences, ul.\u00a0Newelska 6, 01-447, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soko\u0142owski", 
        "givenName": "Jan", 
        "id": "sg:person.015317402421.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317402421.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Systems Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.465202.7", 
          "name": [
            "Systems Research Institute, Polish Academy of Sciences, ul.\u00a0Newelska 6, 01-447, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u017bochowski", 
        "givenName": "Antoni", 
        "id": "sg:person.015325542071.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325542071.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00158-014-1103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003126601", 
          "https://doi.org/10.1007/s00158-014-1103-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-014-1103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003126601", 
          "https://doi.org/10.1007/s00158-014-1103-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/17/5/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009120626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160370302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010429137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160370302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010429137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/22/5/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011164269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/14/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017061032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2010.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017339382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/cicp.100710.021210a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020677366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021350932", 
          "https://doi.org/10.1007/s00158-009-0436-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021350932", 
          "https://doi.org/10.1007/s00158-009-0436-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021350932", 
          "https://doi.org/10.1007/s00158-009-0436-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-009-0436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021350932", 
          "https://doi.org/10.1007/s00158-009-0436-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2011.01.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021498497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021861942", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861942", 
          "https://doi.org/10.1007/b98245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861942", 
          "https://doi.org/10.1007/b98245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.4059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023391812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025983809", 
          "https://doi.org/10.1007/bf00281494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025983809", 
          "https://doi.org/10.1007/bf00281494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110200409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030192653", 
          "https://doi.org/10.1007/s002110200409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10444-011-9205-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031125538", 
          "https://doi.org/10.1007/s10444-011-9205-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/21/2/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033480612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/24/4/045014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034542022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1632-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036622220", 
          "https://doi.org/10.1007/s00158-016-1632-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-016-1632-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036622220", 
          "https://doi.org/10.1007/s00158-016-1632-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-0030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373568", 
          "https://doi.org/10.1007/978-1-4899-0030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-0030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037373568", 
          "https://doi.org/10.1007/978-1-4899-0030-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/31/7/075009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038182613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043025907", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35245-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043025907", 
          "https://doi.org/10.1007/978-3-642-35245-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35245-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043025907", 
          "https://doi.org/10.1007/978-3-642-35245-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/29/2/025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047632842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020528902875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050147486", 
          "https://doi.org/10.1023/a:1020528902875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2009.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050428313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an:2003014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an:2003024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6420/aa54e4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059133311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggt268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059636877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070696076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120899303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141001399234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0101-82052006000200002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068101632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/ipi.2016003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071739323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2017015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084139158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01630563.2018.1432645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100686889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/asy-181465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107081431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-018-1419-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107898064", 
          "https://doi.org/10.1007/s10957-018-1419-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1\u201330, 2019), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10957-018-1420-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "181"
      }
    ], 
    "name": "Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bf97eb58cfaacec1dd4a3692ed8feb6e52662d233e1fe22d28e92e9f4ef3d22"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-018-1420-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107901298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-018-1420-4", 
      "https://app.dimensions.ai/details/publication/pub.1107901298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11707_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10957-018-1420-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1420-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1420-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1420-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1420-4'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-018-1420-4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0742b321108a4dac834838981e79eadc
4 schema:citation sg:pub.10.1007/978-1-4899-0030-2
5 sg:pub.10.1007/978-3-642-35245-4
6 sg:pub.10.1007/b98245
7 sg:pub.10.1007/bf00281494
8 sg:pub.10.1007/s00158-009-0436-7
9 sg:pub.10.1007/s00158-014-1103-1
10 sg:pub.10.1007/s00158-016-1632-x
11 sg:pub.10.1007/s002110200409
12 sg:pub.10.1007/s10444-011-9205-4
13 sg:pub.10.1007/s10957-018-1419-x
14 sg:pub.10.1023/a:1020528902875
15 https://app.dimensions.ai/details/publication/pub.1021861942
16 https://app.dimensions.ai/details/publication/pub.1043025907
17 https://doi.org/10.1002/cpa.3160370302
18 https://doi.org/10.1002/mma.4059
19 https://doi.org/10.1016/j.ijsolstr.2009.01.021
20 https://doi.org/10.1016/j.ijsolstr.2010.07.004
21 https://doi.org/10.1016/j.jcp.2011.01.049
22 https://doi.org/10.1016/j.jcp.2013.10.020
23 https://doi.org/10.1051/m2an/2017015
24 https://doi.org/10.1051/m2an:2003014
25 https://doi.org/10.1051/m2an:2003024
26 https://doi.org/10.1080/01630563.2018.1432645
27 https://doi.org/10.1088/0266-5611/14/3/011
28 https://doi.org/10.1088/0266-5611/17/5/307
29 https://doi.org/10.1088/0266-5611/21/2/008
30 https://doi.org/10.1088/0266-5611/22/5/014
31 https://doi.org/10.1088/0266-5611/24/4/045014
32 https://doi.org/10.1088/0266-5611/29/2/025003
33 https://doi.org/10.1088/0266-5611/31/7/075009
34 https://doi.org/10.1088/1361-6420/aa54e4
35 https://doi.org/10.1090/surv/034
36 https://doi.org/10.1093/gji/ggt268
37 https://doi.org/10.1137/070696076
38 https://doi.org/10.1137/120899303
39 https://doi.org/10.1137/s0036141001399234
40 https://doi.org/10.1590/s0101-82052006000200002
41 https://doi.org/10.3233/asy-181465
42 https://doi.org/10.3934/ipi.2016003
43 https://doi.org/10.4208/cicp.100710.021210a
44 schema:datePublished 2019-04
45 schema:datePublishedReg 2019-04-01
46 schema:description The framework of asymptotic analysis in singularly perturbed geometrical domains presented in the first part of this series of review papers can be employed to produce two-term asymptotic expansions for a class of shape functionals. In Part II (Novotny et al. in J Optim Theory Appl 180(3):1–30, 2019), one-term expansions of functionals are required for algorithms of shape-topological optimization. Such an approach corresponds to the simple gradient method in shape optimization. The Newton method of shape optimization can be replaced, for shape-topology optimization, by two-term expansions of shape functionals. Thus, the resulting approximations are more precise and the associated numerical methods are much more complex compared to one-term expansion topological derivative algorithms. In particular, numerical algorithms associated with first-order topological derivatives of shape functionals have been presented in Part II (Novotny et al. 2019), together with an account of their applications currently found in the literature, with emphasis on shape and topology optimization. In this last part of the review, second-order topological derivatives are introduced. Second-order algorithms of shape-topological optimization are used for numerical solution of representative examples of inverse reconstruction problems. The main feature of these algorithms is that the method is non-iterative and thus very robust with respect to noisy data as well as independent of initial guesses.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N281f601463934212a905c231c984f48a
51 N6524b42024064c6fbd584a0e63e11e42
52 sg:journal.1044187
53 schema:name Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications
54 schema:pagination 1-22
55 schema:productId N691c762eaf6d4abab1e4b7503e5e229c
56 N9aeace57f50a496d8b5b4982088c4b15
57 Nbae9b8b35be64716ac204fae9950df0a
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107901298
59 https://doi.org/10.1007/s10957-018-1420-4
60 schema:sdDatePublished 2019-04-11T11:19
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf104b11350414e3b9bf92fdc71ad23d8
63 schema:url https://link.springer.com/10.1007%2Fs10957-018-1420-4
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0742b321108a4dac834838981e79eadc rdf:first sg:person.013671354153.05
68 rdf:rest N3e7930f48ab74def82e92fea2bc974ab
69 N281f601463934212a905c231c984f48a schema:volumeNumber 181
70 rdf:type schema:PublicationVolume
71 N2edde5a4144b45d1a6ef72bc8bfc50a2 rdf:first sg:person.015325542071.90
72 rdf:rest rdf:nil
73 N3e7930f48ab74def82e92fea2bc974ab rdf:first sg:person.015317402421.41
74 rdf:rest N2edde5a4144b45d1a6ef72bc8bfc50a2
75 N6524b42024064c6fbd584a0e63e11e42 schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N691c762eaf6d4abab1e4b7503e5e229c schema:name doi
78 schema:value 10.1007/s10957-018-1420-4
79 rdf:type schema:PropertyValue
80 N9aeace57f50a496d8b5b4982088c4b15 schema:name readcube_id
81 schema:value 4bf97eb58cfaacec1dd4a3692ed8feb6e52662d233e1fe22d28e92e9f4ef3d22
82 rdf:type schema:PropertyValue
83 Nbae9b8b35be64716ac204fae9950df0a schema:name dimensions_id
84 schema:value pub.1107901298
85 rdf:type schema:PropertyValue
86 Nf104b11350414e3b9bf92fdc71ad23d8 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
92 schema:name Numerical and Computational Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1044187 schema:issn 0022-3239
95 1573-2878
96 schema:name Journal of Optimization Theory and Applications
97 rdf:type schema:Periodical
98 sg:person.013671354153.05 schema:affiliation https://www.grid.ac/institutes/grid.452576.7
99 schema:familyName Novotny
100 schema:givenName Antonio André
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671354153.05
102 rdf:type schema:Person
103 sg:person.015317402421.41 schema:affiliation https://www.grid.ac/institutes/grid.465202.7
104 schema:familyName Sokołowski
105 schema:givenName Jan
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317402421.41
107 rdf:type schema:Person
108 sg:person.015325542071.90 schema:affiliation https://www.grid.ac/institutes/grid.465202.7
109 schema:familyName Żochowski
110 schema:givenName Antoni
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325542071.90
112 rdf:type schema:Person
113 sg:pub.10.1007/978-1-4899-0030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037373568
114 https://doi.org/10.1007/978-1-4899-0030-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-35245-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043025907
117 https://doi.org/10.1007/978-3-642-35245-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/b98245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861942
120 https://doi.org/10.1007/b98245
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf00281494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025983809
123 https://doi.org/10.1007/bf00281494
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00158-009-0436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021350932
126 https://doi.org/10.1007/s00158-009-0436-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00158-014-1103-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003126601
129 https://doi.org/10.1007/s00158-014-1103-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00158-016-1632-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036622220
132 https://doi.org/10.1007/s00158-016-1632-x
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s002110200409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030192653
135 https://doi.org/10.1007/s002110200409
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10444-011-9205-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031125538
138 https://doi.org/10.1007/s10444-011-9205-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10957-018-1419-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107898064
141 https://doi.org/10.1007/s10957-018-1419-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/a:1020528902875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050147486
144 https://doi.org/10.1023/a:1020528902875
145 rdf:type schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1021861942 schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1043025907 schema:CreativeWork
148 https://doi.org/10.1002/cpa.3160370302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010429137
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/mma.4059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023391812
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ijsolstr.2009.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050428313
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijsolstr.2010.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017339382
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jcp.2011.01.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021498497
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jcp.2013.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051274688
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1051/m2an/2017015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084139158
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1051/m2an:2003014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033012
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1051/m2an:2003024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033022
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/01630563.2018.1432645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100686889
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0266-5611/14/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017061032
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0266-5611/17/5/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009120626
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0266-5611/21/2/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033480612
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0266-5611/22/5/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011164269
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0266-5611/24/4/045014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034542022
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0266-5611/29/2/025003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047632842
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0266-5611/31/7/075009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038182613
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1088/1361-6420/aa54e4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059133311
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1090/surv/034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708360
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/gji/ggt268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059636877
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1137/070696076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851337
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1137/120899303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870128
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1137/s0036141001399234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875830
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1590/s0101-82052006000200002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068101632
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3233/asy-181465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107081431
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3934/ipi.2016003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071739323
199 rdf:type schema:CreativeWork
200 https://doi.org/10.4208/cicp.100710.021210a schema:sameAs https://app.dimensions.ai/details/publication/pub.1020677366
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.452576.7 schema:alternateName Laboratório Nacional de Computação Científica
203 schema:name Laboratório Nacional de Computação Científica LNCC/MCT, Coordenação de Matemática Aplicada e Computacional, Av. Getúlio Vargas 333, 25651-075, Petrópolis, RJ, Brazil
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.465202.7 schema:alternateName Systems Research Institute
206 schema:name Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447, Warsaw, Poland
207 UMR 7502 Laboratoire de Mathématiques, Institut Élie Cartan, Université de Lorraine, Nancy 1, B.P. 239, 54506, Vandoeuvre Lès Nancy Cedex, France
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...