An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Paul Armand, Ngoc Nguyen Tran

ABSTRACT

We present a primal-dual augmented Lagrangian method for solving an equality constrained minimization problem, which is able to rapidly detect infeasibility. The method is based on a modification of the algorithm proposed in Armand and Omheni (Optim Methods Softw 32(1):1–21, 2017). A new parameter is introduced to scale the objective function and, in case of infeasibility, to force the convergence of the iterates to an infeasible stationary point. It is shown, under mild assumptions, that whenever the algorithm converges to an infeasible stationary point, the rate of convergence is quadratic. This is a new convergence result for the class of augmented Lagrangian methods. The global convergence of the algorithm is also analyzed. It is also proved that, when the algorithm converges to a stationary point, the properties of the original algorithm are preserved. The numerical experiments show that our new approach is as good as the original one when the algorithm converges to a local minimum, but much more efficient in case of infeasibility. More... »

PAGES

197-215

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-018-1401-7

DOI

http://dx.doi.org/10.1007/s10957-018-1401-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107319018


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Universit\u00e9 de Limoges - Laboratoire XLIM, Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Armand", 
        "givenName": "Paul", 
        "id": "sg:person.07513623067.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07513623067.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Universit\u00e9 de Limoges - Laboratoire XLIM, Limoges, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Ngoc Nguyen", 
        "id": "sg:person.016646430564.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646430564.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/992200.992202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004590401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-014-9679-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007541629", 
          "https://doi.org/10.1007/s10589-014-9679-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-013-0039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016733399", 
          "https://doi.org/10.1007/s10898-013-0039-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00927673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018609722", 
          "https://doi.org/10.1007/bf00927673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00927673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018609722", 
          "https://doi.org/10.1007/bf00927673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2015.1025401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020487333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-016-9849-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025339678", 
          "https://doi.org/10.1007/s10589-016-9849-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9561-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025376971", 
          "https://doi.org/10.1007/s11075-012-9561-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2013.858156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035596980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2012.668905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036440261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101070100263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040788378", 
          "https://doi.org/10.1007/s101070100263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/962437.962439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041348218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-015-0289-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042581574", 
          "https://doi.org/10.1007/s10898-015-0289-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-006-0077-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078655", 
          "https://doi.org/10.1007/s10107-006-0077-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-006-0077-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078655", 
          "https://doi.org/10.1007/s10107-006-0077-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-014-9685-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045090544", 
          "https://doi.org/10.1007/s10589-014-9685-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12532-012-0041-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048399384", 
          "https://doi.org/10.1007/s12532-012-0041-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-009-0264-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048493799", 
          "https://doi.org/10.1007/s10107-009-0264-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-009-0264-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048493799", 
          "https://doi.org/10.1007/s10107-009-0264-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060654797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080738222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120880045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144502414942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623496305560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-017-1071-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083408644", 
          "https://doi.org/10.1007/s10957-017-1071-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-017-1071-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083408644", 
          "https://doi.org/10.1007/s10957-017-1071-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2018.1528250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107498969"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We present a primal-dual augmented Lagrangian method for solving an equality constrained minimization problem, which is able to rapidly detect infeasibility. The method is based on a modification of the algorithm proposed in Armand and Omheni (Optim Methods Softw 32(1):1\u201321, 2017). A new parameter is introduced to scale the objective function and, in case of infeasibility, to force the convergence of the iterates to an infeasible stationary point. It is shown, under mild assumptions, that whenever the algorithm converges to an infeasible stationary point, the rate of convergence is quadratic. This is a new convergence result for the class of augmented Lagrangian methods. The global convergence of the algorithm is also analyzed. It is also proved that, when the algorithm converges to a stationary point, the properties of the original algorithm are preserved. The numerical experiments show that our new approach is as good as the original one when the algorithm converges to a local minimum, but much more efficient in case of infeasibility.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10957-018-1401-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "181"
      }
    ], 
    "name": "An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities", 
    "pagination": "197-215", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9cbde481d9a80811f36f5f0d84c717444706427fbfb723b955463eb0830cbb6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-018-1401-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107319018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-018-1401-7", 
      "https://app.dimensions.ai/details/publication/pub.1107319018"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11691_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10957-018-1401-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1401-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1401-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1401-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-018-1401-7'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-018-1401-7 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N083a387001ec4428b860057c9928ff3c
4 schema:citation sg:pub.10.1007/bf00927673
5 sg:pub.10.1007/s10107-006-0077-1
6 sg:pub.10.1007/s10107-009-0264-y
7 sg:pub.10.1007/s101070100263
8 sg:pub.10.1007/s10589-014-9679-3
9 sg:pub.10.1007/s10589-014-9685-5
10 sg:pub.10.1007/s10589-016-9849-6
11 sg:pub.10.1007/s10898-013-0039-0
12 sg:pub.10.1007/s10898-015-0289-0
13 sg:pub.10.1007/s10957-017-1071-x
14 sg:pub.10.1007/s11075-012-9561-2
15 sg:pub.10.1007/s12532-012-0041-4
16 https://doi.org/10.1080/10556788.2012.668905
17 https://doi.org/10.1080/10556788.2013.858156
18 https://doi.org/10.1080/10556788.2015.1025401
19 https://doi.org/10.1080/10556788.2018.1528250
20 https://doi.org/10.1137/060654797
21 https://doi.org/10.1137/080738222
22 https://doi.org/10.1137/1.9781611971200
23 https://doi.org/10.1137/120880045
24 https://doi.org/10.1137/s0036144502414942
25 https://doi.org/10.1137/s1052623496305560
26 https://doi.org/10.1145/962437.962439
27 https://doi.org/10.1145/992200.992202
28 schema:datePublished 2019-04
29 schema:datePublishedReg 2019-04-01
30 schema:description We present a primal-dual augmented Lagrangian method for solving an equality constrained minimization problem, which is able to rapidly detect infeasibility. The method is based on a modification of the algorithm proposed in Armand and Omheni (Optim Methods Softw 32(1):1–21, 2017). A new parameter is introduced to scale the objective function and, in case of infeasibility, to force the convergence of the iterates to an infeasible stationary point. It is shown, under mild assumptions, that whenever the algorithm converges to an infeasible stationary point, the rate of convergence is quadratic. This is a new convergence result for the class of augmented Lagrangian methods. The global convergence of the algorithm is also analyzed. It is also proved that, when the algorithm converges to a stationary point, the properties of the original algorithm are preserved. The numerical experiments show that our new approach is as good as the original one when the algorithm converges to a local minimum, but much more efficient in case of infeasibility.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N26005c5160a84f53adead0140df26deb
35 Na2fbdeec1fa94c9592312b9d3ea6f6e8
36 sg:journal.1044187
37 schema:name An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities
38 schema:pagination 197-215
39 schema:productId N3dd532d0157c46f0b7868fbfe66c8341
40 N8c6bb9b2941742609dcb0857886be604
41 Nbbba7df939564080b094b5c607ec0426
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107319018
43 https://doi.org/10.1007/s10957-018-1401-7
44 schema:sdDatePublished 2019-04-11T11:16
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8472ce93607541538a9f5efc0b6705a9
47 schema:url https://link.springer.com/10.1007%2Fs10957-018-1401-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N083a387001ec4428b860057c9928ff3c rdf:first sg:person.07513623067.40
52 rdf:rest N92dc7ec199bf436b8f7183d301753cae
53 N26005c5160a84f53adead0140df26deb schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N3dd532d0157c46f0b7868fbfe66c8341 schema:name dimensions_id
56 schema:value pub.1107319018
57 rdf:type schema:PropertyValue
58 N8472ce93607541538a9f5efc0b6705a9 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N8c6bb9b2941742609dcb0857886be604 schema:name readcube_id
61 schema:value e9cbde481d9a80811f36f5f0d84c717444706427fbfb723b955463eb0830cbb6
62 rdf:type schema:PropertyValue
63 N92dc7ec199bf436b8f7183d301753cae rdf:first sg:person.016646430564.52
64 rdf:rest rdf:nil
65 Na2fbdeec1fa94c9592312b9d3ea6f6e8 schema:volumeNumber 181
66 rdf:type schema:PublicationVolume
67 Nbbba7df939564080b094b5c607ec0426 schema:name doi
68 schema:value 10.1007/s10957-018-1401-7
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
74 schema:name Numerical and Computational Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1044187 schema:issn 0022-3239
77 1573-2878
78 schema:name Journal of Optimization Theory and Applications
79 rdf:type schema:Periodical
80 sg:person.016646430564.52 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
81 schema:familyName Tran
82 schema:givenName Ngoc Nguyen
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646430564.52
84 rdf:type schema:Person
85 sg:person.07513623067.40 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
86 schema:familyName Armand
87 schema:givenName Paul
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07513623067.40
89 rdf:type schema:Person
90 sg:pub.10.1007/bf00927673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018609722
91 https://doi.org/10.1007/bf00927673
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10107-006-0077-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045078655
94 https://doi.org/10.1007/s10107-006-0077-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10107-009-0264-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048493799
97 https://doi.org/10.1007/s10107-009-0264-y
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s101070100263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040788378
100 https://doi.org/10.1007/s101070100263
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10589-014-9679-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007541629
103 https://doi.org/10.1007/s10589-014-9679-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10589-014-9685-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090544
106 https://doi.org/10.1007/s10589-014-9685-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10589-016-9849-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025339678
109 https://doi.org/10.1007/s10589-016-9849-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10898-013-0039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016733399
112 https://doi.org/10.1007/s10898-013-0039-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10898-015-0289-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042581574
115 https://doi.org/10.1007/s10898-015-0289-0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10957-017-1071-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083408644
118 https://doi.org/10.1007/s10957-017-1071-x
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11075-012-9561-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025376971
121 https://doi.org/10.1007/s11075-012-9561-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12532-012-0041-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048399384
124 https://doi.org/10.1007/s12532-012-0041-4
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/10556788.2012.668905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036440261
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/10556788.2013.858156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035596980
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/10556788.2015.1025401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487333
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/10556788.2018.1528250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107498969
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/060654797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849189
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/080738222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855253
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/1.9781611971200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553017
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/120880045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869522
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/s0036144502414942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877795
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/s1052623496305560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883559
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/962437.962439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041348218
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/992200.992202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004590401
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.9966.0 schema:alternateName University of Limoges
151 schema:name Université de Limoges - Laboratoire XLIM, Limoges, France
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...