Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

J. O. Royset, E. Y. Pee

ABSTRACT

Discretization algorithms for semiinfinite minimax problems replace the original problem, containing an infinite number of functions, by an approximation involving a finite number, and then solve the resulting approximate problem. The approximation gives rise to a discretization error, and suboptimal solution of the approximate problem gives rise to an optimization error. Accounting for both discretization and optimization errors, we determine the rate of convergence of discretization algorithms, as a computing budget tends to infinity. We find that the rate of convergence depends on the class of optimization algorithms used to solve the approximate problem as well as the policy for selecting discretization level and number of optimization iterations. We construct optimal policies that achieve the best possible rate of convergence and find that, under certain circumstances, the better rate is obtained by inexpensive gradient methods. More... »

PAGES

855-882

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-012-0109-3

DOI

http://dx.doi.org/10.1007/s10957-012-0109-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011320012


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Naval Postgraduate School", 
          "id": "https://www.grid.ac/institutes/grid.1108.8", 
          "name": [
            "Operations Research Department, Naval Postgraduate School, Monterey, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Royset", 
        "givenName": "J. O.", 
        "id": "sg:person.012152343301.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152343301.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.453444.6", 
          "name": [
            "Operations Analysis and Simulation, Defence Science and Technology Agency, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pee", 
        "givenName": "E. Y.", 
        "id": "sg:person.012732553655.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732553655.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01587076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000746968", 
          "https://doi.org/10.1007/bf01587076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-010-9324-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009315196", 
          "https://doi.org/10.1007/s10589-010-9324-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011211101714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009365345", 
          "https://doi.org/10.1023/a:1011211101714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0241-4_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779265", 
          "https://doi.org/10.1007/978-1-4613-0241-4_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0241-4_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013779265", 
          "https://doi.org/10.1007/978-1-4613-0241-4_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jota.0000006685.60019.3e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016866362", 
          "https://doi.org/10.1023/b:jota.0000006685.60019.3e"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/937332.937334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017948863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9117-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022177881", 
          "https://doi.org/10.1007/s10589-007-9117-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-007-9117-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022177881", 
          "https://doi.org/10.1007/s10589-007-9117-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-010-9759-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032500941", 
          "https://doi.org/10.1007/s10957-010-9759-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1667072.1667076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035066898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331930902730070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039446043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-008-9355-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039920065", 
          "https://doi.org/10.1007/s10957-008-9355-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2868-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040059277", 
          "https://doi.org/10.1007/978-1-4757-2868-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2007.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040099539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049423784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400831050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049534117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8853-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049823794", 
          "https://doi.org/10.1007/978-1-4419-8853-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8853-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049823794", 
          "https://doi.org/10.1007/978-1-4419-8853-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03052159208941026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051262937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0330023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0330032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0806025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080734510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1035089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623400376366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.1080.0268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1090.0773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101070100239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083406168", 
          "https://doi.org/10.1007/s101070100239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1972.268971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086183569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/educ.1080.0050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088576157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Discretization algorithms for semiinfinite minimax problems replace the original problem, containing an infinite number of functions, by an approximation involving a finite number, and then solve the resulting approximate problem. The approximation gives rise to a discretization error, and suboptimal solution of the approximate problem gives rise to an optimization error. Accounting for both discretization and optimization errors, we determine the rate of convergence of discretization algorithms, as a computing budget tends to infinity. We find that the rate of convergence depends on the class of optimization algorithms used to solve the approximate problem as well as the policy for selecting discretization level and number of optimization iterations. We construct optimal policies that achieve the best possible rate of convergence and find that, under certain circumstances, the better rate is obtained by inexpensive gradient methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10957-012-0109-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "155"
      }
    ], 
    "name": "Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems", 
    "pagination": "855-882", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "35eed288a9644863b03cb0529fb85c6dbfe426e9264233a83c626db6f77c51a0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-012-0109-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011320012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-012-0109-3", 
      "https://app.dimensions.ai/details/publication/pub.1011320012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10957-012-0109-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-012-0109-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-012-0109-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-012-0109-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-012-0109-3'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-012-0109-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nff29f5d7d7034fd2be0ace87ca6c92cf
4 schema:citation sg:pub.10.1007/978-1-4419-8853-9
5 sg:pub.10.1007/978-1-4613-0241-4_16
6 sg:pub.10.1007/978-1-4757-2868-2_7
7 sg:pub.10.1007/bf01587076
8 sg:pub.10.1007/s101070100239
9 sg:pub.10.1007/s10589-007-9117-x
10 sg:pub.10.1007/s10589-010-9324-8
11 sg:pub.10.1007/s10957-008-9355-9
12 sg:pub.10.1007/s10957-010-9759-1
13 sg:pub.10.1023/a:1011211101714
14 sg:pub.10.1023/b:jota.0000006685.60019.3e
15 https://doi.org/10.1016/j.amc.2007.10.070
16 https://doi.org/10.1016/j.ejor.2006.08.045
17 https://doi.org/10.1080/02331930902730070
18 https://doi.org/10.1080/03052159208941026
19 https://doi.org/10.1109/cdc.1972.268971
20 https://doi.org/10.1137/0330023
21 https://doi.org/10.1137/0330032
22 https://doi.org/10.1137/0806025
23 https://doi.org/10.1137/080734510
24 https://doi.org/10.1137/1035089
25 https://doi.org/10.1137/s1052623400376366
26 https://doi.org/10.1145/1667072.1667076
27 https://doi.org/10.1145/937332.937334
28 https://doi.org/10.1287/educ.1080.0050
29 https://doi.org/10.1287/ijoc.1080.0268
30 https://doi.org/10.1287/opre.1090.0773
31 https://doi.org/10.1515/9781400831050
32 schema:datePublished 2012-12
33 schema:datePublishedReg 2012-12-01
34 schema:description Discretization algorithms for semiinfinite minimax problems replace the original problem, containing an infinite number of functions, by an approximation involving a finite number, and then solve the resulting approximate problem. The approximation gives rise to a discretization error, and suboptimal solution of the approximate problem gives rise to an optimization error. Accounting for both discretization and optimization errors, we determine the rate of convergence of discretization algorithms, as a computing budget tends to infinity. We find that the rate of convergence depends on the class of optimization algorithms used to solve the approximate problem as well as the policy for selecting discretization level and number of optimization iterations. We construct optimal policies that achieve the best possible rate of convergence and find that, under certain circumstances, the better rate is obtained by inexpensive gradient methods.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Nbf981bc67e7d477f8a5e8e204a6a3641
39 Ncb2a90f2bb0b43acb062214194c051da
40 sg:journal.1044187
41 schema:name Rate of Convergence Analysis of Discretization and Smoothing Algorithms for Semiinfinite Minimax Problems
42 schema:pagination 855-882
43 schema:productId N29a3b67718f24dffa087f59d38eef5ad
44 N703d7a29d912427a8e49d9592721fee4
45 N7356c406555d43748b052961cbdc9c76
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320012
47 https://doi.org/10.1007/s10957-012-0109-3
48 schema:sdDatePublished 2019-04-10T22:31
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0ee2ecd98e06434c97ab93b0270b1c7c
51 schema:url http://link.springer.com/10.1007%2Fs10957-012-0109-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0ee2ecd98e06434c97ab93b0270b1c7c schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N29a3b67718f24dffa087f59d38eef5ad schema:name dimensions_id
58 schema:value pub.1011320012
59 rdf:type schema:PropertyValue
60 N703d7a29d912427a8e49d9592721fee4 schema:name readcube_id
61 schema:value 35eed288a9644863b03cb0529fb85c6dbfe426e9264233a83c626db6f77c51a0
62 rdf:type schema:PropertyValue
63 N7356c406555d43748b052961cbdc9c76 schema:name doi
64 schema:value 10.1007/s10957-012-0109-3
65 rdf:type schema:PropertyValue
66 N76d0e2d45bbf43c99c11140fd78a540c rdf:first sg:person.012732553655.90
67 rdf:rest rdf:nil
68 Nbf981bc67e7d477f8a5e8e204a6a3641 schema:volumeNumber 155
69 rdf:type schema:PublicationVolume
70 Ncb2a90f2bb0b43acb062214194c051da schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 Nff29f5d7d7034fd2be0ace87ca6c92cf rdf:first sg:person.012152343301.65
73 rdf:rest N76d0e2d45bbf43c99c11140fd78a540c
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Numerical and Computational Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1044187 schema:issn 0022-3239
81 1573-2878
82 schema:name Journal of Optimization Theory and Applications
83 rdf:type schema:Periodical
84 sg:person.012152343301.65 schema:affiliation https://www.grid.ac/institutes/grid.1108.8
85 schema:familyName Royset
86 schema:givenName J. O.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152343301.65
88 rdf:type schema:Person
89 sg:person.012732553655.90 schema:affiliation https://www.grid.ac/institutes/grid.453444.6
90 schema:familyName Pee
91 schema:givenName E. Y.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732553655.90
93 rdf:type schema:Person
94 sg:pub.10.1007/978-1-4419-8853-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049823794
95 https://doi.org/10.1007/978-1-4419-8853-9
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-1-4613-0241-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013779265
98 https://doi.org/10.1007/978-1-4613-0241-4_16
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4757-2868-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059277
101 https://doi.org/10.1007/978-1-4757-2868-2_7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01587076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000746968
104 https://doi.org/10.1007/bf01587076
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s101070100239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083406168
107 https://doi.org/10.1007/s101070100239
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10589-007-9117-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022177881
110 https://doi.org/10.1007/s10589-007-9117-x
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10589-010-9324-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009315196
113 https://doi.org/10.1007/s10589-010-9324-8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10957-008-9355-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039920065
116 https://doi.org/10.1007/s10957-008-9355-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10957-010-9759-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032500941
119 https://doi.org/10.1007/s10957-010-9759-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1011211101714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009365345
122 https://doi.org/10.1023/a:1011211101714
123 rdf:type schema:CreativeWork
124 sg:pub.10.1023/b:jota.0000006685.60019.3e schema:sameAs https://app.dimensions.ai/details/publication/pub.1016866362
125 https://doi.org/10.1023/b:jota.0000006685.60019.3e
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.amc.2007.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040099539
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ejor.2006.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049423784
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/02331930902730070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039446043
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/03052159208941026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051262937
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cdc.1972.268971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086183569
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/0330023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844351
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/0330032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844360
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/0806025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854351
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/080734510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855130
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1137/1035089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863545
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1137/s1052623400376366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883217
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/1667072.1667076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035066898
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/937332.937334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017948863
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1287/educ.1080.0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088576157
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1287/ijoc.1080.0268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706684
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1287/opre.1090.0773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726235
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1515/9781400831050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049534117
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.1108.8 schema:alternateName Naval Postgraduate School
162 schema:name Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.453444.6 schema:alternateName Defence Science and Technology Agency
165 schema:name Operations Analysis and Simulation, Defence Science and Technology Agency, Singapore, Singapore
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...