Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02-18

AUTHORS

A. Miele, T. Wang, J. A. Mathwig, M. Ciarcià

ABSTRACT

For a host aircraft in the abort landing mode under emergency conditions, the best strategy for collision avoidance is to maximize wrt to the controls the timewise minimum distance between the host aircraft and an intruder aircraft. This leads to a maximin problem or Chebyshev problem of optimal control. At the maximin point of the encounter, the distance between the two aircraft has a minimum wrt the time; its time derivative vanishes and this occurs when the relative position vector is orthogonal to the relative velocity vector. By using the zero derivative condition as an inner boundary condition, the one-subarc Chebyshev problem can be converted into a two-subarc Bolza-Pontryagin problem, which in turn can be solved via the multiple-subarc sequential gradient-restoration algorithm.Optimal Trajectory. In the avoidance phase, maximum angle of attack is used by the host aircraft until the minimum distance point is reached. In the recovery phase, the host aircraft completes the transition of the angle of attack from the maximum value to that required for quasisteady ascending flight.Guidance Trajectory. Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme is developed such that it approximates the optimal trajectory results in real time. In the avoidance phase, the guidance scheme employs the same control history (maximum angle of attack) as that of the optimal trajectory so as to achieve the goal of maximizing wrt the control the timewise minimum distance. In the recovery phase, the guidance scheme employs a time-explicit cubic control law so as to achieve the goal of recovering the quasisteady ascending flight state at the final time.Numerical results for both the optimal trajectory and the guidance trajectory complete the paper. More... »

PAGES

233-254

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-010-9669-2

DOI

http://dx.doi.org/10.1007/s10957-010-9669-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001653839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aero-Astronautics Group, Rice University, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "A.", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aero-Astronautics Group, Rice University, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "T.", 
        "id": "sg:person.014414570607.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PROS Revenue Management, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PROS Revenue Management, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathwig", 
        "givenName": "J. A.", 
        "id": "sg:person.015640115644.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640115644.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e0 di Palermo, Palermo, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10776.37", 
          "name": [
            "Universit\u00e0 di Palermo, Palermo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciarci\u00e0", 
        "givenName": "M.", 
        "id": "sg:person.011306316257.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10957-009-9597-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027779543", 
          "https://doi.org/10.1007/s10957-009-9597-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022114117273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677003", 
          "https://doi.org/10.1023/a:1022114117273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022154001343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020008711", 
          "https://doi.org/10.1023/a:1022154001343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-004-6464-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030995432", 
          "https://doi.org/10.1007/s10957-004-6464-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-95857-6_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026540865", 
          "https://doi.org/10.1007/978-0-387-95857-6_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-008-9452-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051502490", 
          "https://doi.org/10.1007/s10957-008-9452-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02-18", 
    "datePublishedReg": "2010-02-18", 
    "description": "For a host aircraft in the abort landing mode under emergency conditions, the best strategy for collision avoidance is to maximize wrt to the controls the timewise minimum distance between the host aircraft and an intruder aircraft. This leads to a maximin problem or Chebyshev problem of optimal control. At the maximin point of the encounter, the distance between the two aircraft has a minimum wrt the time; its time derivative vanishes and this occurs when the relative position vector is orthogonal to the relative velocity vector. By using the zero derivative condition as an inner boundary condition, the one-subarc Chebyshev problem can be converted into a two-subarc Bolza-Pontryagin problem, which in turn can be solved via the multiple-subarc sequential gradient-restoration algorithm.Optimal Trajectory. In the avoidance phase, maximum angle of attack is used by the host aircraft until the minimum distance point is reached. In the recovery phase, the host aircraft completes the transition of the angle of attack from the maximum value to that required for quasisteady ascending flight.Guidance Trajectory. Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme is developed such that it approximates the optimal trajectory results in real time. In the avoidance phase, the guidance scheme employs the same control history (maximum angle of attack) as that of the optimal trajectory so as to achieve the goal of maximizing wrt the control the timewise minimum distance. In the recovery phase, the guidance scheme employs a time-explicit cubic control law so as to achieve the goal of recovering the quasisteady ascending flight state at the final time.Numerical results for both the optimal trajectory and the guidance trajectory complete the paper.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-010-9669-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "146"
      }
    ], 
    "keywords": [
      "Chebyshev problem", 
      "optimal trajectories", 
      "guidance scheme", 
      "sequential gradient-restoration algorithm", 
      "gradient-restoration algorithm", 
      "inner boundary conditions", 
      "optimal control", 
      "avoidance phase", 
      "minimum distance point", 
      "optimal trajectory results", 
      "control law", 
      "trajectory optimization", 
      "derivative condition", 
      "minimum distance", 
      "abort landing", 
      "final time", 
      "derivative vanishes", 
      "maximin problem", 
      "position vector", 
      "control history", 
      "boundary conditions", 
      "angle of attack", 
      "numerical results", 
      "relative velocity vector", 
      "relative position vector", 
      "real-time implementation", 
      "velocity vector", 
      "collision avoidance", 
      "trajectory results", 
      "flight states", 
      "scheme", 
      "problem", 
      "Bolza", 
      "distance point", 
      "multiple-subarc sequential gradient-restoration algorithm", 
      "trajectories", 
      "vanishes", 
      "intruder aircraft", 
      "maximum angle", 
      "wrt", 
      "vector", 
      "maximum value", 
      "optimization", 
      "aircraft", 
      "algorithm", 
      "point", 
      "distance", 
      "angle", 
      "law", 
      "ascending flight", 
      "host aircraft", 
      "conditions", 
      "real time", 
      "transition", 
      "control", 
      "phase", 
      "results", 
      "time", 
      "landing mode", 
      "state", 
      "implementation", 
      "mode", 
      "flight", 
      "goal", 
      "values", 
      "emergency conditions", 
      "best strategy", 
      "attacks", 
      "landing", 
      "turn", 
      "avoidance", 
      "recovery phase", 
      "guidance", 
      "strategies", 
      "encounters", 
      "history", 
      "paper"
    ], 
    "name": "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance", 
    "pagination": "233-254", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001653839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-010-9669-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-010-9669-2", 
      "https://app.dimensions.ai/details/publication/pub.1001653839"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-010-9669-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-010-9669-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-010-9669-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-010-9669-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-010-9669-2'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      107 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-010-9669-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ncce58b61acb547e5b9e1bb963a544c9b
4 schema:citation sg:pub.10.1007/978-0-387-95857-6_21
5 sg:pub.10.1007/s10957-004-6464-y
6 sg:pub.10.1007/s10957-008-9452-9
7 sg:pub.10.1007/s10957-009-9597-1
8 sg:pub.10.1023/a:1022114117273
9 sg:pub.10.1023/a:1022154001343
10 schema:datePublished 2010-02-18
11 schema:datePublishedReg 2010-02-18
12 schema:description For a host aircraft in the abort landing mode under emergency conditions, the best strategy for collision avoidance is to maximize wrt to the controls the timewise minimum distance between the host aircraft and an intruder aircraft. This leads to a maximin problem or Chebyshev problem of optimal control. At the maximin point of the encounter, the distance between the two aircraft has a minimum wrt the time; its time derivative vanishes and this occurs when the relative position vector is orthogonal to the relative velocity vector. By using the zero derivative condition as an inner boundary condition, the one-subarc Chebyshev problem can be converted into a two-subarc Bolza-Pontryagin problem, which in turn can be solved via the multiple-subarc sequential gradient-restoration algorithm.Optimal Trajectory. In the avoidance phase, maximum angle of attack is used by the host aircraft until the minimum distance point is reached. In the recovery phase, the host aircraft completes the transition of the angle of attack from the maximum value to that required for quasisteady ascending flight.Guidance Trajectory. Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme is developed such that it approximates the optimal trajectory results in real time. In the avoidance phase, the guidance scheme employs the same control history (maximum angle of attack) as that of the optimal trajectory so as to achieve the goal of maximizing wrt the control the timewise minimum distance. In the recovery phase, the guidance scheme employs a time-explicit cubic control law so as to achieve the goal of recovering the quasisteady ascending flight state at the final time.Numerical results for both the optimal trajectory and the guidance trajectory complete the paper.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N19069d13e3844da2ba0a2964862d3e3f
16 N62cdb6eabe61426aac227fb9bc334764
17 sg:journal.1044187
18 schema:keywords Bolza
19 Chebyshev problem
20 abort landing
21 aircraft
22 algorithm
23 angle
24 angle of attack
25 ascending flight
26 attacks
27 avoidance
28 avoidance phase
29 best strategy
30 boundary conditions
31 collision avoidance
32 conditions
33 control
34 control history
35 control law
36 derivative condition
37 derivative vanishes
38 distance
39 distance point
40 emergency conditions
41 encounters
42 final time
43 flight
44 flight states
45 goal
46 gradient-restoration algorithm
47 guidance
48 guidance scheme
49 history
50 host aircraft
51 implementation
52 inner boundary conditions
53 intruder aircraft
54 landing
55 landing mode
56 law
57 maximin problem
58 maximum angle
59 maximum value
60 minimum distance
61 minimum distance point
62 mode
63 multiple-subarc sequential gradient-restoration algorithm
64 numerical results
65 optimal control
66 optimal trajectories
67 optimal trajectory results
68 optimization
69 paper
70 phase
71 point
72 position vector
73 problem
74 real time
75 real-time implementation
76 recovery phase
77 relative position vector
78 relative velocity vector
79 results
80 scheme
81 sequential gradient-restoration algorithm
82 state
83 strategies
84 time
85 trajectories
86 trajectory optimization
87 trajectory results
88 transition
89 turn
90 values
91 vanishes
92 vector
93 velocity vector
94 wrt
95 schema:name Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance
96 schema:pagination 233-254
97 schema:productId N123581dc174440568369106ea41f33a9
98 Nd10d86f1b4dc4db2afa0f6ff2d3cee81
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001653839
100 https://doi.org/10.1007/s10957-010-9669-2
101 schema:sdDatePublished 2022-12-01T06:28
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N213dedcdab52452f97df54ca17c5c7b4
104 schema:url https://doi.org/10.1007/s10957-010-9669-2
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N123581dc174440568369106ea41f33a9 schema:name dimensions_id
109 schema:value pub.1001653839
110 rdf:type schema:PropertyValue
111 N19069d13e3844da2ba0a2964862d3e3f schema:issueNumber 2
112 rdf:type schema:PublicationIssue
113 N213dedcdab52452f97df54ca17c5c7b4 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N26e58715112a4cc680391772d7db7da5 rdf:first sg:person.014414570607.44
116 rdf:rest N78fcb3f3bec94f8f81ce1ce417964e49
117 N62cdb6eabe61426aac227fb9bc334764 schema:volumeNumber 146
118 rdf:type schema:PublicationVolume
119 N78fcb3f3bec94f8f81ce1ce417964e49 rdf:first sg:person.015640115644.55
120 rdf:rest Na1df6ddac1e840b486c0a1877ad5e485
121 Na1df6ddac1e840b486c0a1877ad5e485 rdf:first sg:person.011306316257.92
122 rdf:rest rdf:nil
123 Ncce58b61acb547e5b9e1bb963a544c9b rdf:first sg:person.015552732657.49
124 rdf:rest N26e58715112a4cc680391772d7db7da5
125 Nd10d86f1b4dc4db2afa0f6ff2d3cee81 schema:name doi
126 schema:value 10.1007/s10957-010-9669-2
127 rdf:type schema:PropertyValue
128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
129 schema:name Mathematical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
132 schema:name Applied Mathematics
133 rdf:type schema:DefinedTerm
134 sg:journal.1044187 schema:issn 0022-3239
135 1573-2878
136 schema:name Journal of Optimization Theory and Applications
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.011306316257.92 schema:affiliation grid-institutes:grid.10776.37
140 schema:familyName Ciarcià
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92
143 rdf:type schema:Person
144 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
145 schema:familyName Wang
146 schema:givenName T.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
148 rdf:type schema:Person
149 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
150 schema:familyName Miele
151 schema:givenName A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
153 rdf:type schema:Person
154 sg:person.015640115644.55 schema:affiliation grid-institutes:None
155 schema:familyName Mathwig
156 schema:givenName J. A.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640115644.55
158 rdf:type schema:Person
159 sg:pub.10.1007/978-0-387-95857-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026540865
160 https://doi.org/10.1007/978-0-387-95857-6_21
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10957-004-6464-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030995432
163 https://doi.org/10.1007/s10957-004-6464-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10957-008-9452-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051502490
166 https://doi.org/10.1007/s10957-008-9452-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10957-009-9597-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027779543
169 https://doi.org/10.1007/s10957-009-9597-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1023/a:1022114117273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677003
172 https://doi.org/10.1023/a:1022114117273
173 rdf:type schema:CreativeWork
174 sg:pub.10.1023/a:1022154001343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008711
175 https://doi.org/10.1023/a:1022154001343
176 rdf:type schema:CreativeWork
177 grid-institutes:None schema:alternateName PROS Revenue Management, Houston, TX, USA
178 schema:name PROS Revenue Management, Houston, TX, USA
179 rdf:type schema:Organization
180 grid-institutes:grid.10776.37 schema:alternateName Università di Palermo, Palermo, Italy
181 schema:name Università di Palermo, Palermo, Italy
182 rdf:type schema:Organization
183 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, TX, USA
184 schema:name Aero-Astronautics Group, Rice University, Houston, TX, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...