Optimal Trajectories for Spacecraft Rendezvous View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

A. Miele, M. W. Weeks, M. Ciarcià

ABSTRACT

The efficient execution of a rendezvous maneuver is an essential component of various types of space missions. This work describes the formulation and numerical investigation of the thrust function required to minimize the time or fuel required for the terminal phase of the rendezvous of two spacecraft. The particular rendezvous studied concerns a target spacecraft in a circular orbit and a chaser spacecraft with an initial separation distance and separation velocity in all three dimensions. First, the time-optimal rendezvous is investigated followed by the fuel-optimal rendezvous for three values of the max-thrust acceleration via the sequential gradient-restoration algorithm. Then, the time-optimal rendezvous for given fuel and the fuel-optimal rendezvous for given time are investigated. There are three controls, one determining the thrust magnitude and two determining the thrust direction in space. The time-optimal case results in a two-subarc solution: a max-thrust accelerating subarc followed by a max-thrust braking subarc. The fuel-optimal case results in a four-subarc solution: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. The time-optimal case with fuel given and the fuel-optimal case with time given result in two, three, or four-subarc solutions depending on the performance index and the constraints. Regardless of the number of subarcs, the optimal thrust distribution requires the thrust magnitude to be at either the maximum value or zero. The coasting periods are finite in duration and their length increases as the time to rendezvous increases and/or as the max allowable thrust increases. Another finding is that, for the fuel-optimal rendezvous with the time unconstrained, the minimum fuel required is nearly constant and independent of the max available thrust. Yet another finding is that, depending on the performance index, constraints, and initial conditions, sometime the initial application of thrust must be delayed, resulting in an optimal rendezvous trajectory which starts with a coasting subarc. More... »

PAGES

353-376

References to SciGraph publications

  • 1970-04. Sequential gradient-restoration algorithm for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1995-09. Linearized impulsive rendezvous problem in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1968-07. Method of particular solutions for linear, two-point boundary-value problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2007-03. Guidance Trajectories for Spacecraft Rendezvous in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-007-9166-4

    DOI

    http://dx.doi.org/10.1007/s10957-007-9166-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001715979


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.419085.1", 
              "name": [
                "Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weeks", 
            "givenName": "M. W.", 
            "id": "sg:person.013430524457.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430524457.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciarci\u00e0", 
            "givenName": "M.", 
            "id": "sg:person.011306316257.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1022154001343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020008711", 
              "https://doi.org/10.1023/a:1022154001343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02192159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047176800", 
              "https://doi.org/10.1007/bf02192159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00937371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008341596", 
              "https://doi.org/10.1007/bf00937371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-007-9165-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037186961", 
              "https://doi.org/10.1007/s10957-007-9165-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022114117273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022677003", 
              "https://doi.org/10.1023/a:1022114117273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00927913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010952160", 
              "https://doi.org/10.1007/bf00927913"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-03", 
        "datePublishedReg": "2007-03-01", 
        "description": "Abstract\nThe efficient execution of a rendezvous maneuver is an essential component of various types of space missions. This work describes the formulation and numerical investigation of the thrust function required to minimize the time or fuel required for the terminal phase of the rendezvous of two spacecraft. The particular rendezvous studied concerns a target spacecraft in a circular orbit and a chaser spacecraft with an initial separation distance and separation velocity in all three dimensions. First, the time-optimal rendezvous is investigated followed by the fuel-optimal rendezvous for three values of the max-thrust acceleration via the sequential gradient-restoration algorithm. Then, the time-optimal rendezvous for given fuel and the fuel-optimal rendezvous for given time are investigated. There are three controls, one determining the thrust magnitude and two determining the thrust direction in space.\n\nThe time-optimal case results in a two-subarc solution: a max-thrust accelerating subarc followed by a max-thrust braking subarc. The fuel-optimal case results in a four-subarc solution: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. The time-optimal case with fuel given and the fuel-optimal case with time given result in two, three, or four-subarc solutions depending on the performance index and the constraints.\n\nRegardless of the number of subarcs, the optimal thrust distribution requires the thrust magnitude to be at either the maximum value or zero. The coasting periods are finite in duration and their length increases as the time to rendezvous increases and/or as the max allowable thrust increases. Another finding is that, for the fuel-optimal rendezvous with the time unconstrained, the minimum fuel required is nearly constant and independent of the max available thrust. Yet another finding is that, depending on the performance index, constraints, and initial conditions, sometime the initial application of thrust must be delayed, resulting in an optimal rendezvous trajectory which starts with a coasting subarc.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-007-9166-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "keywords": [
          "thrust magnitude", 
          "optimal rendezvous trajectory", 
          "performance index", 
          "thrust increases", 
          "numerical investigation", 
          "available thrust", 
          "initial separation distance", 
          "spacecraft rendezvous", 
          "chaser spacecraft", 
          "minimum fuel", 
          "target spacecraft", 
          "fuel", 
          "thrust direction", 
          "separation velocity", 
          "rendezvous maneuver", 
          "rendezvous trajectories", 
          "separation distance", 
          "thrust functions", 
          "thrust distribution", 
          "maximum value", 
          "space missions", 
          "spacecraft", 
          "optimal trajectories", 
          "rendezvous", 
          "sequential gradient-restoration algorithm", 
          "length increases", 
          "initial conditions", 
          "thrust", 
          "gradient-restoration algorithm", 
          "solution", 
          "velocity", 
          "fuel-optimal rendezvous", 
          "magnitude", 
          "acceleration", 
          "initial application", 
          "applications", 
          "time", 
          "constraints", 
          "trajectories", 
          "formulation", 
          "increase", 
          "phase", 
          "circular orbit", 
          "mission", 
          "values", 
          "direction", 
          "conditions", 
          "work", 
          "investigation", 
          "maneuvers", 
          "algorithm", 
          "efficient execution", 
          "distribution", 
          "components", 
          "results", 
          "orbit", 
          "distance", 
          "control", 
          "cases", 
          "dimensions", 
          "subarcs", 
          "types", 
          "essential component", 
          "space", 
          "index", 
          "number", 
          "execution", 
          "function", 
          "concern", 
          "duration", 
          "period", 
          "terminal phase", 
          "findings"
        ], 
        "name": "Optimal Trajectories for Spacecraft Rendezvous", 
        "pagination": "353-376", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001715979"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-007-9166-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-007-9166-4", 
          "https://app.dimensions.ai/details/publication/pub.1001715979"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_445.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-007-9166-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9166-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9166-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9166-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9166-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      104 URIs      90 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-007-9166-4 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N16f3c6212dda46c991480763fb18d347
    4 schema:citation sg:pub.10.1007/bf00927913
    5 sg:pub.10.1007/bf00937371
    6 sg:pub.10.1007/bf02192159
    7 sg:pub.10.1007/s10957-007-9165-5
    8 sg:pub.10.1023/a:1022114117273
    9 sg:pub.10.1023/a:1022154001343
    10 schema:datePublished 2007-03
    11 schema:datePublishedReg 2007-03-01
    12 schema:description Abstract The efficient execution of a rendezvous maneuver is an essential component of various types of space missions. This work describes the formulation and numerical investigation of the thrust function required to minimize the time or fuel required for the terminal phase of the rendezvous of two spacecraft. The particular rendezvous studied concerns a target spacecraft in a circular orbit and a chaser spacecraft with an initial separation distance and separation velocity in all three dimensions. First, the time-optimal rendezvous is investigated followed by the fuel-optimal rendezvous for three values of the max-thrust acceleration via the sequential gradient-restoration algorithm. Then, the time-optimal rendezvous for given fuel and the fuel-optimal rendezvous for given time are investigated. There are three controls, one determining the thrust magnitude and two determining the thrust direction in space. The time-optimal case results in a two-subarc solution: a max-thrust accelerating subarc followed by a max-thrust braking subarc. The fuel-optimal case results in a four-subarc solution: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. The time-optimal case with fuel given and the fuel-optimal case with time given result in two, three, or four-subarc solutions depending on the performance index and the constraints. Regardless of the number of subarcs, the optimal thrust distribution requires the thrust magnitude to be at either the maximum value or zero. The coasting periods are finite in duration and their length increases as the time to rendezvous increases and/or as the max allowable thrust increases. Another finding is that, for the fuel-optimal rendezvous with the time unconstrained, the minimum fuel required is nearly constant and independent of the max available thrust. Yet another finding is that, depending on the performance index, constraints, and initial conditions, sometime the initial application of thrust must be delayed, resulting in an optimal rendezvous trajectory which starts with a coasting subarc.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Nc77a4ba1d77f4b8fa35f02f1772aea44
    16 Nf7166c9ae11a49939c47d65dcc651ea5
    17 sg:journal.1044187
    18 schema:keywords acceleration
    19 algorithm
    20 applications
    21 available thrust
    22 cases
    23 chaser spacecraft
    24 circular orbit
    25 components
    26 concern
    27 conditions
    28 constraints
    29 control
    30 dimensions
    31 direction
    32 distance
    33 distribution
    34 duration
    35 efficient execution
    36 essential component
    37 execution
    38 findings
    39 formulation
    40 fuel
    41 fuel-optimal rendezvous
    42 function
    43 gradient-restoration algorithm
    44 increase
    45 index
    46 initial application
    47 initial conditions
    48 initial separation distance
    49 investigation
    50 length increases
    51 magnitude
    52 maneuvers
    53 maximum value
    54 minimum fuel
    55 mission
    56 number
    57 numerical investigation
    58 optimal rendezvous trajectory
    59 optimal trajectories
    60 orbit
    61 performance index
    62 period
    63 phase
    64 rendezvous
    65 rendezvous maneuver
    66 rendezvous trajectories
    67 results
    68 separation distance
    69 separation velocity
    70 sequential gradient-restoration algorithm
    71 solution
    72 space
    73 space missions
    74 spacecraft
    75 spacecraft rendezvous
    76 subarcs
    77 target spacecraft
    78 terminal phase
    79 thrust
    80 thrust direction
    81 thrust distribution
    82 thrust functions
    83 thrust increases
    84 thrust magnitude
    85 time
    86 trajectories
    87 types
    88 values
    89 velocity
    90 work
    91 schema:name Optimal Trajectories for Spacecraft Rendezvous
    92 schema:pagination 353-376
    93 schema:productId N3fd28c731d504c049387616dc42e6c33
    94 Ne5c06b48b1f74eb5bd23f36ca08f484f
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001715979
    96 https://doi.org/10.1007/s10957-007-9166-4
    97 schema:sdDatePublished 2022-11-24T20:52
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N4e60e4a8fbab4b7c8ceae5bbac52e2d8
    100 schema:url https://doi.org/10.1007/s10957-007-9166-4
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N16f3c6212dda46c991480763fb18d347 rdf:first sg:person.015552732657.49
    105 rdf:rest N313dbaf23d534615bab78634aa5dd00c
    106 N313dbaf23d534615bab78634aa5dd00c rdf:first sg:person.013430524457.88
    107 rdf:rest Nb685f463df14461c9acd4ff452c05873
    108 N3fd28c731d504c049387616dc42e6c33 schema:name doi
    109 schema:value 10.1007/s10957-007-9166-4
    110 rdf:type schema:PropertyValue
    111 N4e60e4a8fbab4b7c8ceae5bbac52e2d8 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Nb685f463df14461c9acd4ff452c05873 rdf:first sg:person.011306316257.92
    114 rdf:rest rdf:nil
    115 Nc77a4ba1d77f4b8fa35f02f1772aea44 schema:issueNumber 3
    116 rdf:type schema:PublicationIssue
    117 Ne5c06b48b1f74eb5bd23f36ca08f484f schema:name dimensions_id
    118 schema:value pub.1001715979
    119 rdf:type schema:PropertyValue
    120 Nf7166c9ae11a49939c47d65dcc651ea5 schema:volumeNumber 132
    121 rdf:type schema:PublicationVolume
    122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Mathematical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Applied Mathematics
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1044187 schema:issn 0022-3239
    129 1573-2878
    130 schema:name Journal of Optimization Theory and Applications
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.011306316257.92 schema:affiliation grid-institutes:grid.21940.3e
    134 schema:familyName Ciarcià
    135 schema:givenName M.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92
    137 rdf:type schema:Person
    138 sg:person.013430524457.88 schema:affiliation grid-institutes:grid.419085.1
    139 schema:familyName Weeks
    140 schema:givenName M. W.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430524457.88
    142 rdf:type schema:Person
    143 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    144 schema:familyName Miele
    145 schema:givenName A.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    147 rdf:type schema:Person
    148 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
    149 https://doi.org/10.1007/bf00927913
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00937371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008341596
    152 https://doi.org/10.1007/bf00937371
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02192159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047176800
    155 https://doi.org/10.1007/bf02192159
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10957-007-9165-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037186961
    158 https://doi.org/10.1007/s10957-007-9165-5
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1022114117273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677003
    161 https://doi.org/10.1023/a:1022114117273
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1022154001343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008711
    164 https://doi.org/10.1023/a:1022154001343
    165 rdf:type schema:CreativeWork
    166 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, TX, USA
    167 schema:name Aero-Astronautics Group, Rice University, Houston, TX, USA
    168 rdf:type schema:Organization
    169 grid-institutes:grid.419085.1 schema:alternateName Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA
    170 schema:name Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...